Refine
Document Type
- Conference Proceeding (7)
- Working Paper (7)
- Article (3)
- Book (1)
Keywords
- Anfahrversuch (15)
- Fahrzeug (13)
- Vehicle (13)
- Compatibility (11)
- Kompatibilität (11)
- Bewertung (10)
- Evaluation (assessment) (10)
- Impact test (veh) (10)
- Safety (10)
- Sicherheit (10)
Institute
The goal of the project FIMCAR (Frontal Impact and Compatibility Assessment Research) was to define an integrated set of test procedures and associated metrics to assess a vehicle's frontal impact protection, which includes self- and partner-protection. For the development of the set, two different full-width tests (full-width deformable barrier [FWDB] test, full-width rigid barrier test) and three different offset tests (offset deformable barrier [ODB] test, progressive deformable barrier [PDB] test, moveable deformable barrier with the PDB barrier face [MPDB] test) have been investigated. Different compatibility assessment procedures were analysed and metrics for assessing structural interaction (structural alignment, vertical and horizontal load spreading) as well as several promising metrics for the PDB/MPDB barrier were developed. The final assessment approach consists of a combination of the most suitable full-width and offset tests. For the full-width test (FWDB), a metric was developed to address structural alignment based on load cell wall information in the first 40 ms of the test. For the offset test (ODB), the existing ECE R94 was chosen. Within the paper, an overview of the final assessment approach for the frontal impact test procedures and their development is given.
To improve vehicle safety in frontal collisions, the crash compatibility between the colliding vehicles is crucial. Compatibility aims to improve both the self and partner protection properties of vehicles. Although compatibility has received worldwide attention for many years, no final assessment approach has been defined. Within the Frontal Impact and Compatibility Assessment Research (FIMCAR) project, different frontal impact test procedures (offset deformable barrier [ODB] test as currently used for Economic Commission for Europe [ECE] R94, progressive deformable barrier test as proposed by France for a new ECE regulation, moveable deformable barrier test as discussed worldwide, full-width rigid barrier test as used in Federal Motor Vehicle Safety Standard [FMVSS] 208, and full-width deformable barrier test) were analyzed regarding their potential for future frontal impact legislation. The research activities focused on car-to-car frontal impact accidents based on accident investigations involving newer cars. Test procedures were developed with both a crash test program and numerical simulations. The proposal from FIMCAR is to use a full-width test procedure with a deformable element and compatibility metrics in combination with the current offset test as a frontal impact assessment approach that also addresses compatibility. By adding a full-width test to the current ODB test it is possible to better address the issues of structural misalignment and injuries resulting from high acceleration accidents as observed in the current fleet. The estimated benefit ranges from a 5 to 12 percent reduction of fatalities and serious injuries resulting from frontal impact accidents. By using a deformable element in the full-width test, the test conditions are more representative of real-world situations with respect to acceleration pulse, restraint system triggering time, and deformation pattern of the front structure. The test results are therefore expected to better represent real-world performance of the tested car. Furthermore, the assessment of the structural alignment is more robust than in the rigid wall test.
Das Ziel der Untersuchung war, die Grenzen der Belastbarkeit eines Rollstuhl- und Personenrückhaltesystems mit Kraftknoten nach DIN 75078-2 zu ermitteln. Dazu wurden dynamische Schlittenversuche durchgeführt, bei denen die Verzögerungspulse sowie das Gesamtgewicht von Rollstuhl und Prüfpuppe variiert wurden. Für die Untersuchungen kamen ein Prüfrollstuhl, definiert nach ISO 10542, und Rückhaltesysteme mit Kraftknoten gemäß DIN 75078-2 zum Einsatz. Das Rückhaltesystem bestand aus einem Rollstuhl- und einem Personenrückhaltesystem, wobei das Rollstuhlrückhaltesystem (RRS) mit vier bzw. sechs Gurten und entsprechenden Retraktoren an einem dynamischen Schlittenaufbau befestigt wurde. Das Personenrückhaltesystem (PRS) bestand aus einem am Rollstuhl integrierten Beckengurt sowie einem Schulterschräggurt, der am Beckengurt und am Schlittenaufbau befestigt wurde. Ferner wurden bei den Versuchen Prüfpuppen verschiedener Alters- und Gewichtsklassen (P6, HIII 5 %, HIII 50 % und HIII 95 %) eingesetzt Die Belastungsanforderungen für das Rückhaltesystem wurden sukzessiv erweitert, indem einerseits das Gesamtgewicht (Rollstuhl und Prüfpuppe) und andererseits auch die Verzögerungspulse bis zur Versagensgrenze erhöht wurden. Das Vier-Gurt-Rückhaltesystem konnte bei einem Verzögerungspuls von 10 g einem Gesamtgewicht von bis zu 221 kg standhalten. Bei einem Verzögerungspuls von 20 g und einem Gesamtgewicht von 134 kg wurde das Vier-Gurt-System bis über die Grenzen belastet. Das Sechs-Gurt-Rückhaltesystem hat Belastungen bis 221 kg standgehalten. Infolgedessen ist bei einer Erhöhung der Verzögerungspulse auf 20 g und einem Gesamtgewicht von mehr als 109 kg ein Sechs-Gurt-System zu empfehlen.
The off-set assessment procedure potentially contributes to the FIMCAR objectives to maintain the compartment strength and to assess load spreading in frontal collisions. Furthermore it provides the opportunity to assess the restraint system performance with different pulses if combined with a full-width assessment procedure in the frontal assessment approach. Originally it was expected that the PDB assessment procedure would be selected for the FIMCAR assessment approach. However, it was not possible to deliver a compatibility metric in time so that the current off-set procedure (ODB as used in UNECE R94) with some minor modifications was proposed for the FIMCAR Assessment Approach. Nevertheless the potential to assess load spreading, which appears not to be possible with any other assessed frontal impact assessment procedure was considered to be still high. Therefore the development work for the PDB assessment procedure did not stop with the decision not to select the PDB procedure. As a result of the decisions to use the current ODB and to further develop the PDB procedure, both are covered within this deliverable. The deliverable describes the off-set test procedure that will be recommended by FIMCAR consortium, this corresponds to the ODB test as it is specified in UN-ECE Regulation 94 (R94), i.e. EEVC deformable element with 40% overlap at a test speed of 56 km/h. In addition to the current R94 requirements, FIMCAR will recommend to introduce some structural requirements which will guarantee sufficiently strong occupant compartments by enforcing the stability of the forward occupant cell. With respect to the PDB assessment procedure a new metric, Digital Derivative in Y direction - DDY, was developed, described, analysed, and compared with other metrics. The DDY metric analyses the deformation gradients laterally across the PDB face. The more even the deformation, the lower the DDY values and the better the metric- result. In order analyse the different metrics, analysis of the existing PDB test results and the results of the performed simulation studies was performed. In addition, an assessment of artificial deformation profiles with the metrics took place. This analysis shows that there are still issues with the DDY metric but it appears that it is possible to solve them with future optimisations. For example the current metric assesses only the area within 60% of the half vehicle width. For vehicles that have the longitudinals further outboard, the metric is not effective. In addition to the metric development, practical issues of the PDB tests such as the definition of a scan procedure for the analysis of the deformation pattern including the validation of the scanning procedure by the analysis of 3 different scans at different locations of the same barrier were addressed. Furthermore the repeatability and reproducibility of the PDB was analysed. The barrier deformation readings seem to be sensitive with respect to the impact accuracy. In total, the deliverable is meant to define the FIMCAR off-set assessment procedure and to be a starting point for further development of the PDB assessment procedure.
The objective of this deliverable is to describe the expected influence of the candidate test procedures developed in FIMCAR for frontal impact on other impact types. The other impact types of primary interest are front-to-side impacts, collisions with road restraint systems (e.g. guardrails), and heavy goods vehicle impacts. These collision types were chosen as they involve structures that can be adapted to improve safety. Collisions with vulnerable road users (VRU) were not explicitly investigated in FIMCAR. It is expected that the vehicle structures of interest in FIMCAR can be designed into a VRU friendly shell. Information used for this deliverable comes from simulations and car-to-car crash tests conducted in FIMCAR or review of previous research. Three test configurations (full width, offset, and moving deformable barriers) were the input to the FIMCAR selection process. There are three different types of offset tests and two different full width tests. During the project test procedures could be divided into three groups that provide different influences or outcomes on vehicle designs: 1. The ODB barrier provides a method to assess part of the vehicles energy absorption capabilities and compartment test in one test. 2. The FWRB and FWDB have similar capabilities to control structural alignment, further assess energy absorption capabilities, and promote the improvements in the occupant restraint system for high deceleration impacts. 3. The PDB and MPDB can be used to promote better load spreading in the vehicle structures, in addition to assessing energy absorption and occupant compartment strength in an offset configuration. The consortium selected the ODB and FWDB as the two best candidates for short term application in international rulemaking. The review of how all candidates would affect vehicle performance in other impacts (beside front-to-front vehicle or frontal impacts with fixed obstacles) however is reported in this deliverable to support the benefit analysis reported in FIMCAR. The grouping presented above is used to discuss all five test candidates using similarities between certain tests and thereby simplify the discussion.
The objectives of the FIMCAR (Frontal Impact and Compatibility Assessment Research) project are to answer the remaining open questions identified in earlier projects (such as understanding of the advantages and disadvantages of force based metrics and barrier deformation based metrics, confirmation of specific compatibility issues such as structural interaction, investigation of force matching) and to finalise the frontal impact test procedures required to assess compatibility. Research strategies and priorities were based on earlier research programs and the FIMCAR accident data analysis. The identified real world safety issues were used to develop a list of compatibility characteristics which were then prioritised within the consortium. This list was the basis for evaluating the different test candidates. This analysis resulted in the combination of the Full Width Deformable Barrier test (FWDB) with compatibility metrics and the existing Offset Deformable Barrier (ODB) as described in UN-ECE Regulation 94 with additional cabin integrity requirement as being proposed as the FIMCAR assessment approach. The proposed frontal impact assessment approach addresses many of the issues identified by the FIMCAR consortium but not all frontal impact and compatibility issues could be addressed.
For the assessment of vehicle safety in frontal collisions, the crash compatibility between the colliding vehicles is crucial. Compatibility compromises both the self protection and the partner protection properties of vehicles. For the accident data analysis, the CCIS (GB) and GIDAS (DE) in-depth data bases were used. Selection criteria were frontal car accidents with car in compliance with ECE R94. For this study belted adult occupants in the front seats sustaining MAIS 2+ injuries were studied. Following this analysis FIMCAR concluded that the following compatibility issues are relevant: - Poor structural interaction (especially low overlap and over/underriding) - Compartment strength - Frontal force mismatch with lower priority than poor structural interaction In addition injuries arising from the acceleration loading of the occupant are present in a significant portion of frontal crashes. Based on the findings of the accident analysis the aims that shall be addressed by the proposed assessment approach were defined and priorities were allocated to them. The aims and priorities shall help to decide on suitable test procedures and appropriate metrics. In general it is anticipated that a full overlap and off-set test procedure is the most appropriate set of tests to assess a vehicle- frontal impact self and partner protection.
The objective was to develop and validate a crash trolley (reference vehicle) equipped with a compartment and a full restraint system for driver and front seat passenger which can be used in full scale crash testing. Furthermore, the crash trolley should have a suspension to show rotation and nick effects similar to real vehicles. Within the development phase the reference vehicle was build based on a European family car. Special attention was needed to provide appropriate strength to the trolley and its suspension. The reference vehicle is equipped with a restraint system consisting of airbags, pedals, seats, dashboard, and windscreen. On the front of the vehicle different crash barriers can be installed to provide miscellaneous deceleration pulses. For the validation phase a series of low and high speed crash tests with HIII dummies were conducted and compared with full scale tests. For the comparison deceleration pulse, dummy numbers and vehicle movement were analyzed. Validation tests with velocities up to 60 km/h showed promising results. The compartment and the suspension systems stayed stable. Rotation effects were comparable with full scale car crash tests. The airbags and seat belt system worked reasonable. The acceleration pulse compared to an Euro NCAP test had a similar characteristic but was in general slightly lower. After the successful validation the reference vehicle is already in use in different studies in the field of vehicle safety research at BASt.
For the assessment of vehicle safety in frontal collisions compatibility (which consists of self and partner protection) between opponents is crucial. Although compatibility has been analysed worldwide for over 10 years, no final assessment approach has been defined to date. Taking into account the European Enhanced Vehicle safety Committee (EEVC) compatibility and frontal impact working group (WG15) and the FP5 VC-COMPAT project activities, two test approaches have been identified as the most promising candidates for the assessment of compatibility. Both are composed of an off-set and a full overlap test procedure. In addition another procedure (a test with a moving deformable barrier) is getting more attention in current research programmes. The overall objective of the FIMCAR project is to complete the development of the candidate test procedures and propose a set of test procedures suitable for regulatory application to assess and control a vehicle- frontal impact and compatibility crash safety. In addition an associated cost benefit analysis should be performed. The objectives of the work reported in this deliverable were to review existing full-width test procedures and their discussed compatibility metrics, to report recent activities and findings with respect to full-width assessment procedures and to assess test procedures and metrics. Starting with a review of previous work, candidate metrics and associated performance limits to assess a vehicle- structural interaction potential, in particular its structural alignment, have been developed for both the Full Width Deformable Barrier (FWDB) and Full Width Rigid Barrier (FWRB) tests. Initial work was performed to develop a concept to assess a vehicle- frontal force matching. However, based on the accident analyses performed within FIMCAR frontal force matching was not evaluated as a first priority and thus in line with FIMCAR strategy the focus was put on the development of metrics for the assessment of structural interaction which was evaluated as a first priority.
Accident analysis
(2014)
For the assessment of vehicle safety in frontal collisions compatibility (which consists of self and partner protection) between opponents is crucial. Although compatibility has been analysed worldwide for years, no final assessment approach has been defined to date. Taking into account the European Enhanced Vehicle safety Committee (EEVC) compatibility and frontal impact working group (WG15) and the EC funded FP5 VC-COMPAT project activities, two test approaches have been identified as the most promising candidates for the assessment of compatibility. Both are composed of an off-set and a full overlap test procedure. In addition another procedure (a test with a moving deformable barrier) is getting more attention in today- research programmes. The overall objective of the FIMCAR project is to complete the development of the candidate test procedures and propose a set of test procedures suitable for regulatory application to assess and control a vehicle- frontal impact and compatibility crash safety. In addition an associated cost benefit analysis should be performed. The specific objectives of the work reported in this deliverable were: - Determine if previously identified compatibility issues are still relevant in current vehicle fleet: Structural interaction, Frontal force matching, Compartment strength in particular for light cars. - Determine nature of injuries and injury mechanisms: Body regions injured o Injury mechanism: Contact with intrusion, Contact, Deceleration / restraint induced. The main data sources for this report were the CCIS and Stats 19 databases from Great Britain and the GIDAS database from Germany. The different sampling and reporting schemes for the detailed databases (CCIS & GIDAS) sometimes do not allow for direct comparisons of the results. However the databases are complementary " CCIS captures more severe collisions highlighting structure and injury issues while GIDAS provides detailed data for a broader range of crash severities. The following results represent the critical points for further development of test procedures in FIMCAR.
Cost benefit analysis
(2014)
Although the number of road accident casualties in Europe is falling the problem still remains substantial. In 2011 there were still over 30,000 road accident fatalities [EC 2012]. Approximately half of these were car occupants and about 60 percent of these occurred in frontal impacts. The next stage to improve a car- safety performance in frontal impacts is to improve its compatibility for car-to-car impacts and for collisions against objects and HGVs. Compatibility consists of improving both a car- self and partner protection in a manner such that there is good interaction with the collision partner and the impact energy is absorbed in the car- frontal structures in a controlled way which results in a reduction of injuries. Over the last ten years much research has been performed which has found that there are four main factors related to a car- compatibility [Edwards 2003, Edwards 2007]. These are structural interaction potential, frontal force matching, compartment strength and the compartment deceleration pulse and related restraint system performance. The objective of the FIMCAR FP7 EC-project was to develop an assessment approach suitable for regulatory application to control a car- frontal impact and compatibility crash performance and perform an associated cost benefit analysis for its implementation.
For the assessment of vehicle safety in frontal collisions compatibility (which consists of self and partner protection) between opponents is crucial. Although compatibility has been analysed worldwide for over 10 years, no final assessment approach has been defined to date. Taking into account the European Enhanced Vehicle safety Committee (EEVC) compatibility and the final report to the steering committee on frontal impact [Faerber 2007] and the FP5 VC-COMPAT[Edwards 2007] project activities, two test approaches were identified as the most promising candidates for the assessment of compatibility. Both are composed of an off-set and a full overlap test procedure. In addition another procedure (a test with a moving deformable barrier) is getting more attention in current research programmes. The overall objective of the FIMCAR project is to complete the development of the candidate test procedures and propose a set of test procedures suitable for regulatory application to assess and control a vehicle- frontal impact and compatibility crash safety. In addition an associated cost benefit analysis will be performed. In the FIMCAR Deliverable D 3.1 [Adolph 2013] the development and assessment of criteria and associated performance limits for the full width test procedure were reported. In this Deliverable D3.2 analyses of the test data (full width tests, car-to-car tests and component tests), further development and validation of the full width assessment protocol and development of the load cell and load cell wall specification are reported. The FIMCAR full-width assessment procedure consists of a 50 km/h test against the Full Width Deformable Barrier (FWDB). The Load Cell Wall behind the deformable element assesses whether or not important Energy Absorbing Structures are within the Common Interaction Zone as defined based on the US part 581 zone. The metric evaluates the row forces and requires that the forces directly above and below the centre line of the Common Interaction Zone exceed a minimum threshold. Analysis of the load spreading showed that metrics that rely on sum forces of rows and columns are within acceptable tolerances. Furthermore it was concluded that the Repeatability and Reproducibility of the FWDB test is acceptable. The FWDB test was shown to be capable to detect lower load paths that are beneficial in car-to-car impacts.
In the European Project FIMCAR, a proposal for a frontal impact test configuration was developed which included an additional full width deformable barrier (FWDB) test. Motivation for the deformable element was partly to measure structural forces as well as to produce a severe crash pulse different from that in the offset test. The objective of this study was to analyze the safety performance of vehicles in the full width rigid barrier test (FWRB) and in the full width deformable barrier test (FWDB). In total, 12 vehicles were crashed in both configurations. Comparison of these tests to real world accident data was used to identify the crash barrier most representative of real world crashes. For all vehicles, the airbag visible times were later in the FWDB configuration. This was attributed to the attenuation of the initial acceleration peak, observed in FWRB tests, by the addition of the deformable element. These findings were in alignment with airbag triggering times seen in real world crash data. Also, the dummy loadings were slightly worse in FWDB compared to FWRB tests, which is possibly linked to the airbag firing and a more realistic loading of the vehicle crash structures in the FWDB configuration. Evaluations of the lower extremities have shown a general increasing of the tibia index with the crash pulse severity.
Thoracic injury is one of the predominant types of severe injuries in frontal accidents. The assessment of the injury risk to the thorax in the current frontal impact test procedures is based on the uni-axial chest deflection measured in the dummy Hybrid III. Several studies have shown that criteria based on the linear chest potentiometer are not sensitive enough to distinguish between different restraint systems, and cannot indicate asymmetric chest loading, which has been shown to correlate to increased injury risk. Furthermore, the measurement is sensitive to belt position on the dummy chest. The objective of this study was to evaluate the optical multipoint chest deflection measurement system "RibEye" in frontal impact sled tests. Therefore the sensitivity of the RibEyesystem to different restraint system parameters was investigated. Furthermore, the issue of signal drop out at the 6 th rib was investigated in this study.A series of sled tests were conducted with the RibEye system in the Hybrid III 50%. The sled environment consisted of a rigid seat and a standard production three-point seat belt system. Rib deflections were recorded with the RibEye system and additionally with the standard chest potentiometer. The tests were carried out at crash pulses of two different velocities (30 km/h and 64 km/h). The tests were conducted with different belt routing to investigate the sensitivity of chest deflection measurements to belt position on the dummy chest. Furthermore, different restraint system parameters were investigated (force limiter level, with or without pretensioning) to evaluate if the RibEye measurements provide additional information to distinguish between restraint system configurations . The results showed that with the RibEye system it was possible to identify the effect of belt routing in more detail. The chest deflections measured with the standard chest potentiometer as well as the maximum deflection measured by RibEye allowed the distinction to be made between different force limiter levels. The RibEye system was also able to clearly show the asymmetric deflection of the rib cage due to belt loading. In some configurations, differences of more than 15 mm were observed between the left and side areas of the chest. Furthermore, the abdomen insert was identified as source of the problem of signal drop out at the 6th rib. Possible solutions are discussed. In conclusion, the RibEye system provided valuable additional information regarding the assessment of restraint systems. It has the potential to enable the evaluation of thoracic injury risk due to asymmetric loading. Further investigations with the RibEye should be extended to tests in a vehicle environment, which include a vehicle seat and other restraint system components such as an airbag.
In general the passive safety capability is much greater in newer versus older cars due to the stiff compartment preventing intrusion in severe collisions. However, the stiffer structure which increases the deceleration can lead to a change in injury patterns. In order to analyse possible injury mechanisms for thoracic and lumbar spine injuries, data from the German Inâ€Depth Accident Study (GIDAS) were used in this study. A twoâ€step approach of statistical and caseâ€byâ€case analysis was applied for this investigation. In total 4,289 collisions were selected involving 8,844 vehicles, 5,765 injured persons and 9,468 coded injuries. Thoracic and lumbar spine injuries such as burst, compression or dislocation fractures as well as soft tissue injuries were found to occur in frontal impacts even without intrusion to the passenger compartment. If a MAIS 2+ injury occurred, in 15% of the cases a thoracic and/or lumbar spine injury is included. Considering AIS 2+ thoracic and lumbar spine, most injuries were fractures and occurred in the lumbar spine area. From the case by case analyses it can be concluded that lumbar spine fractures occur in accidents without the engagement of longitudinals, lateral loading to the occupant and/or very severe accidents with MAIS being much higher than the spine AIS.
Ziel des Projektes war es zu ermitteln, ob und wenn ja unter welchen Bedingungen Elektrokleinstfahrzeuge im Straßenverkehr sicher betrieben werden können, welche technischen Anforderungen dafür notwendig sind und welches Konfliktpotential zu anderen Verkehrsteilnehmern zu erwarten ist. Stehend gefahrene (d.h. Fahrzeuge ohne Sitz z.B. Tretroller mit Elektrounterstützung) und selbstbalancierende Elektrokleinstfahrzeuge (z.B. dem Segway ähnliche) konnten bis 2016 nach der Rahmenrichtlinie 2002/24/EG (Typgenehmigungsvorschrift für Krafträder/Kategorie L-Fahrzeuge), die nun außer Kraft ist, genehmigt werden. Die dort genannten Anforderungen wurden durch die Elektrokleinstfahrzeuge größtenteils nicht erfüllt. Seit 2016 gilt die neue Typgenehmigungs-Verordnung (EU) 168/2013 für Krafträder. Nach dieser Verordnung kann die Genehmigung solcher Elektrokleinstfahrzeuge national geregelt werden, da die Verordnung diese definitiv vom Anwendungsbereich ausschließt. Um bei diesen Fahrzeugen national über eine Genehmigungsfähigkeit entscheiden zu können, wird zum einen eine Einschätzung zur Verkehrssicherheit solcher Fahrzeuge benötigt. Zum anderen müssen aus fahrdynamischen Versuchen Erkenntnisse gewonnen werden, um diese Fahrzeuge klassifizieren zu können und um jeweils Anforderungen festlegen zu können. Die BASt hat im Rahmen dieses Forschungsprojektes Vorschläge für eine derartige Klassifizierung von bestimmten Elektrokleinstfahrzeugen und für die zu stellenden technischen Anforderungen an diese Fahrzeuge erarbeitet, um diese Fahrzeuge sicher im Straßenverkehr verwenden zu können. In dem Forschungsprojekt wurden Elektrokleinstfahrzeuge in vier Teilstudien untersucht: Betrachtungen zur aktiven und passiven Sicherheit, zum Nutzerverhalten und zur Risikobewertung sowie zur Verkehrsfläche. Dabei wurde aufgezeigt, dass es möglich ist, neue Kategorien mit bestimmten Mindestanforderungen zu bilden. Es wird empfohlen, diese Anforderungen einzuhalten, sollten Elektrokleinstfahrzeuge zukünftig im öffentlichen Verkehr betrieben werden können und dürfen. Seitens der aktiven Sicherheit wurden mithilfe von fahrdynamischen Versuchen und technischen Untersuchungen Anforderungen erarbeitet, die das verkehrssicherheitstechnische Risiko bestmöglich minimieren. Weiterhin wurden Empfehlungen in Bezug auf die passive Sicherheit von Elektrokleinstfahrzeugen ausgesprochen, die ein Sicherheitsniveau gewährleisteten, das ähnlich zu heutigen bestehenden Fahrzeugen ist. Das subjektive Fahrverhalten zeigte, dass Elektrokleinstfahrzeuge grundsätzlich sicher vom Fahrer kontrollierbar sind, solange bestimmte Systemgrenzen eingehalten werden. Hinsichtlich der Aspekte des Nutzerverhaltens wurden Schutzausrüstung und das Kräfteverhältnis zu anderen Verkehrsteilnehmern bewertet. In Abhängigkeit von den vorgeschlagenen Fahrzeugkategorien werden entsprechende Verkehrsflächen für die Benutzung empfohlen, basierend auf der im öffentlichen Verkehr analysierten subjektiven Sicherheit und basierend auf einer Analyse des Konfliktpotenzials gegenüber anderen Verkehrsteilnehmern. Aus allen Ergebnissen des Projektes wurden Empfehlungen für die Nutzung der Verkehrsflächen sowie Anforderungen an die (sicherheits-) technische Ausstattung für die neu vorgeschlagenen Elektrokleinstfahrzeuge- Kategorien abgeleitet, die jeweils an Anforderungen für die bereits existierenden Fahrzeugkategorien "Leichtmofa" bzw. "Mofa" angelehnt sind.
Although the number of road accident casualties in Europe (EU27) is falling the problem still remains substantial. In 2011 there were still over 30,000 road accident fatalities. Approximately half of these were car occupants and about 60 percent of these occurred in frontal impacts. The next stage to improve a car's safety performance in frontal impacts is to improve its compatibility. The objective of the FIMCAR FP7 EU-project was to develop an assessment approach suitable for regulatory application to control a car's frontal impact and compatibility crash performance and perform an associated cost benefit analysis for its implementation. This paper reports the cost benefit analyses performed to estimate the effect of the following potential changes to the frontal impact regulation: • Option 1 " No change and allow current measures to propagate throughout the vehicle fleet. • Option 2 " Add a full width test to the current offset Deformable Barrier (ODB) test. • Option 3 " Add a full width test and replace the current ODB test with a Progressive Deformable Barrier (PDB) test. For the analyses national data were used from Great Britain (STATS 19) and from Germany (German Federal Statistical Office). In addition in-depth real word crash data were used from CCIS (Great Britain) and GIDAS (Germany). To estimate the benefit a generalised linear model, an injury reduction model and a matched pairs modelling approach were applied. The benefits were estimated to be: for Option 1 "No change" about 2.0%; for Option 2 "FW test" ranging from 5 to 12% and for Option 3 "FW and PDB tests" 9 to 14% of car occupant killed and seriously injured casualties.
Frontal impact is still the most relevant impact direction in terms of injury causation amongst car occupants. Especially for car-to-car frontal impacts the mass ratio between the involved vehicles has a significant impact on the injury risk (the heavier the opponent car the higher the injury risk). In order to address this issue frontal Mobile Deformable Barrier test procedures have been developed world-wide (for example the MPDB procedure that was fully described during the FIMCAR Project). The objective of this study was to investigate how vehicles of different weight classes perform in a mobile barrier test procedure compared to a fixed barrier test procedure (the full width rigid and offset deformable barrier test). Beyond that, the influence of vehicle mass and vehicle deformation on injuries was evaluated based on real world accident data. Five vehicle types were selected and tested in a fixed offset test procedure (ODB), a full width rigid barrier test procedure (FWRB) and a mobile offset test procedure (MPDB). For the accident analyses data from the German In-Depth Accident Study (GIDAS) was evaluated with a focus on MAIS 2+ injured belted front row car (UN-R 94 compliant cars) occupants in frontal impact accidents. Test data indicates higher dummy loadings, in particular for the head acceleration and chest acceleration, in the MPDB test for the vehicles with a mass lighter than the trolley (1,500 kg) compared to the FWRB test. The trend of increased vehicle stiffness (especially illustrated by tests with the MPDB and small cars) shows the need of a further improvement of passive restraint systems to reduce the occupant loading and with it the injury risk. The analyzed GIDAS data confirm the higher injury risk for occupants in cars with an accident weight of less than 1,500 kg compared to those with a crash weight above 1,500 kg in car-to-car and car-to-object or car-to-HGV, respectively. Furthermore the injury risk increases with decreasing mass ratio (i.e., the opponent car is heavier) in car-to-car accidents. Independent from the higher injury risk, the risk for passenger compartment intrusion in frontal impact appears not to be independent on the crash weight of the car.