Refine
Keywords
- Brustkorb (4)
- Passives Sicherheitssystem (4)
- Thorax (4)
- Alte Leute (3)
- Crashtest (3)
- Impact test (veh) (3)
- Injury (3)
- Insasse (3)
- Passive safety system (3)
- Simulation (3)
Institute
- Abteilung Fahrzeugtechnik (6)
- Sonstige (2)
One main objective of the EU-Project SENIORS is to provide improved methods to assess thoracic injury risk to elderly occupants. In contribution to this task paired simulations with a THOR dummy model and human body model will be used to develop improved thoracic injury risk functions. The simulation results can provide data for injury criteria development in chest loading conditions that are underrepresented in PMHS test data sets that currently proposed risk functions are based on. To support this approach a new simplified generic but representative sled test fixture and CAE model for testing and simulation were developed. The parameter definition and evaluation of this sled test fixture and model is presented in this paper. The justification and definition of requirements for this test set-up was based on experience from earlier studies. Simple test fixtures like the gold standard sled fixture are easy to build and also to model in CAE, but provide too severe belt-only loading. On the other hand a vehicle buck including production components like airbag and seat is more representative, but difficult to model and to be replicated at a different laboratory. Furthermore some components might not be available for physical tests at later stage. The basis of the SENIORS generic sled test set-up is the gold standard fixture with a cable seat back and foot rest. No knee restraint was used. The seat pan design was modified including a seat ramp. The three-point belt system had a generic adjustable load limiter. A pre-inflated driver airbag assembly was developed for the test fixture. Results of THOR test and simulations in different configurations will be presented. The configurations include different deceleration pulses. Further parameter variations are related to the restraint system including belt geometry and load limiter levels. Additionally different settings of the generic airbag were evaluated. The test set-up was evaluated and optimized in tests with the THOR-M dummy in different test configurations. Belt restraint parameters like D-ring position and load limiter setting were modified to provide moderate chest loading to the occupant. This resulted in dummy readings more representative of the loading in a contemporary vehicle than most available PMHS sled tests reported in the literature. However, to achieve a loading configuration that exposes the occupant to even less severe loading comparable to modern vehicle restraints it might be necessary to further modify the test set-up. The new generic sled test set-up and a corresponding CAE model were developed and applied in tests and simulations with THOR. Within the SENIORS project with this test set-up also volunteer and PMHS as well as HBM simulations are performed, which will be reported in other publications. The test environment can contribute in future studies to the assessment of existing and new frontal impact dummies as well as dummy improvements and related instrumentation. The test set-up and model could also serve as a new standard test environment for PMHS and volunteer tests as well as HBM simulations.
The EVERSAFE project addressed many safety issues for electric vehicles including the crash and post-crash safety. The project reviewed the market shares of full electric and hybrid vehicles, latest road traffic accident data involving severely damaged electric vehicles in Europe, and identified critical scenarios that may be particular for electric vehicles. Also, recent results from international research on the safety of electric vehicles were included in this paper such as results from performed experimental abuse cell and vehicle crash tests (incl. non-standardized tests with the Mitsubishi i-MiEV and the BMW i3), from discussions in the UN IG REESS and the GTR EVS as well as guidelines (handling procedures) for fire brigades from Germany, Sweden and the United States of America. Potential hazards that might arise from damaged electric vehicles after severe traffic accidents are an emerging issue for modern vehicles and were summarized from the perspective of different national approaches and discussed from the practical view of fire fighters. Recent rescue guidelines were reviewed and used as the basis for a newly developed rescue procedure. The paper gives recommendations in particular towards fire fighters, but also to vehicle manufacturers and first-aiders.
Upcoming test procedures and regulations consider the use of Q-dummies. Especially Q6 and Q10 will be introduced to assess the safety of child occupants in vehicle rear seats. Therefore detailed knowledge of these dummies is important to improve safety. As recent studies have shown, chest deflection measurements of both dummies are influenced by parameters like belt geometry. This could lead to a non optimized design of child restraint systems (CRS) and belt systems. The objective of this study is to obtain a more detailed understanding of the sensitivity of chest measurements to restraint parameters and to investigate the possibilities of chest acceleration as an alternative for the assessment of chest injury risks. A study of frontal impact sled tests was performed with Q6 and Q10 in a generic rear seat environment on a bench. Belt parameters like modified belt attachment locations were varied. For the Q6 dummy, different positioning settings of the CRS (booster with backrest) and of the dummy itself were investigated. The Q10 dummy was seated on a booster cushion. Here the position of the upper belt anchorage point was varied. To simulate the influence of vehicle rotation in the ODB crash configuration, the bench was pre-rotated on the sled in additional tests with the Q10. This configuration was tested with and without pretensioner and load limiter. Chest deflection in Q6 showed a high sensitivity to changes in positioning of the CRS and the dummy itself. A more slouched position of the CRS or dummy resulted in a reduction of measured chest deflection, whereas chest acceleration increased for a more slouched position of the CRS. Chest deflection in Q10 is sensitive to belt geometry as already shown in other studies. In a more outboard position of the shoulder belt anchorage the measured chest deflection is higher. Chest acceleration shows the opposite tendency, which is highest for the rearmost location of the upper belt anchorage. On a pre-rotated bench the highest chest deflection within this test series was observed without load limiter/pretensioner and an outboard belt position. By optimizing the belt location and the use of pretensioner/load limier the chest deflection was significantly reduced. For the Q6 a criterion based on chest acceleration as well as deflection measured at two locations might be the most reliable approach, which requires further research with an additional upper deflection sensor. In the Q10 the measured chest deflection does not always correctly reflect the severity of chest loading. The deflection is depending on initial belt position and restraint parameters as well as test conditions, which result in different directions of belt migration. A3ms chest acceleration might be a better indicator for severity of chest loading independent of different conditions like belt geometries. However, in some cases the benefit of an optimized restraint system could only be shown by deflection. These findings suggest that further research is needed to identify a chest injury assessment method, which could be based on deflection as well as acceleration or other parameters related to belt to occupant interaction.
Frontal impact is still the most relevant impact direction in terms of injury causation amongst car occupants. Especially for car-to-car frontal impacts the mass ratio between the involved vehicles has a significant impact on the injury risk (the heavier the opponent car the higher the injury risk). In order to address this issue frontal Mobile Deformable Barrier test procedures have been developed world-wide (for example the MPDB procedure that was fully described during the FIMCAR Project). The objective of this study was to investigate how vehicles of different weight classes perform in a mobile barrier test procedure compared to a fixed barrier test procedure (the full width rigid and offset deformable barrier test). Beyond that, the influence of vehicle mass and vehicle deformation on injuries was evaluated based on real world accident data. Five vehicle types were selected and tested in a fixed offset test procedure (ODB), a full width rigid barrier test procedure (FWRB) and a mobile offset test procedure (MPDB). For the accident analyses data from the German In-Depth Accident Study (GIDAS) was evaluated with a focus on MAIS 2+ injured belted front row car (UN-R 94 compliant cars) occupants in frontal impact accidents. Test data indicates higher dummy loadings, in particular for the head acceleration and chest acceleration, in the MPDB test for the vehicles with a mass lighter than the trolley (1,500 kg) compared to the FWRB test. The trend of increased vehicle stiffness (especially illustrated by tests with the MPDB and small cars) shows the need of a further improvement of passive restraint systems to reduce the occupant loading and with it the injury risk. The analyzed GIDAS data confirm the higher injury risk for occupants in cars with an accident weight of less than 1,500 kg compared to those with a crash weight above 1,500 kg in car-to-car and car-to-object or car-to-HGV, respectively. Furthermore the injury risk increases with decreasing mass ratio (i.e., the opponent car is heavier) in car-to-car accidents. Independent from the higher injury risk, the risk for passenger compartment intrusion in frontal impact appears not to be independent on the crash weight of the car.
Test and assessment procedures for passive pedestrian protection based on developments by the European Enhanced Vehicle-safety Committee (EEVC) have been introduced in world-wide regulations and consumer test programmes, with considerable harmonization between these programmes. Nevertheless, latest accident investigations reveal a stagnation of pedestrian fatality numbers on European roads running the risk of not meeting the European Union- goal of halving the number of road fatalities by the year 2020. The branch of external road user safety within the EC-funded research project SENIORS under the HORIZON 2020 framework programme focuses on investigating the benefit of modifications to pedestrian test and assessment procedures and their impactors for vulnerable road users with focus on the elderly. Injury patterns of pedestrians and cyclists derived from the German In-Depth Accident Study (GIDAS) show a trend of AIS 2+ and AIS 3+ injuries getting more relevant for the thorax region in crashes with newer cars (Wisch et al., 2017), while maintaining the relevance for head and lower extremities. Several crash databases from Europe such as GIDAS and the Swedish Traffic Accident Data Acquisition (STRADA) also show that head, thorax and lower extremities are the key affected body regions not only for the average population but in particular for the elderly. Therefore, the SENIORS project is focusing on an improvement of currently available impactors and procedures in terms of biofidelity and injury assessment ability towards a better protection of the affected body regions, incorporating previous results from FP 6 project APROSYS and subsequent studies carried out by BASt. The paper describes the overall methodology to develop revised FE impactor models. Matched human body model and impactor simulations against generic test rigs provide transfer functions that will be used for the derivation of impactor criteria from human injury risk functions for the affected body regions. In a later step, the refined impactors will be validated by simulations against actual vehicle front-ends. Prototyping and adaptation of test and assessment procedures as well as an impact assessment will conclude the work of the project at the final stage. The work will contribute to an improved protection of vulnerable road users focusing on the elderly. The use of advanced human body models to develop applicable assessment criteria for the revised impactors is intended to cope with the paucity of actual biomechanical data focusing on elderly pedestrians. In order to achieve optimized results in the future, the improved test methods need to be implemented within an integrated approach, combining active with passive safety measures. In order to address the developments in road accidents and injury patterns of vulnerable road users, established test and assessment procedures need to be continuously verified and, where needed, to be revised. The demographic change as well as changes in the vehicle fleet, leading to a variation of accident scenarios, injury frequencies and injury patterns of vulnerable road users are addressed by the work provided by the SENIORS project, introducing updated impactors for pedestrian test and assessment procedures.
Test and assessment procedures for passive pedestrian protection of passenger cars are in place for many years within world-wide regulations as well as consumer test programmes. Nevertheless, recent accident investigations show a stagnation of pedestrian fatality numbers on European roads alongside increasing injury severities for older road users. The EU-funded SENIORS (Safety ENhancing Innovations for Older Road userS) project developed and evaluated a thorax injury prediction tool (TIPT) for later incorporation within test and assessment procedures. Accident data indicates an increasing portion of AIS2 and AIS3+ thoracic injuries of older pedestrians and cyclists which are currently not assessed in any test procedure for vulnerable road users. Therefore, SENIORS focused on the development of a test tool predicting the risk of rib fractures of vulnerable road users (VRU). While injury risk functions were reanalyzed, human body model (HBM) simulations against categorized generic vehicle frontends served as input for the definition of test setups and corresponding impact parameters. TIPT component tests against a generic frontend and an actual vehicle were used for the evaluation of the technical feasibility. The TIPT component tests shows the general feasibility of a test procedure for the assessment of thoracic injuries, with good repeatability and reproducibility of kinematics and results. Impact parameters such as the inclination angles of the thorax, angles of the velocity vector and impact speeds well replicate the parameters gained from the HBM simulations. The proposed markup and assessment scheme offers the possibility of a homogeneous evaluation of the protection potential of vehicle frontends while maintaining justifiable testing efforts. During evaluation testing, the proposed requirements were entirely met. The developed prototype of TIPT and launching system offer impact angles and speeds as suggested by HBM simulations. However, since thorax impacts during pedestrian accidents do not occur perpendicularly to the vehicle surface in most cases, the TIPT built-in linear potentiometers do not acquire the true resultant intrusions on the ribcage and thus, TIPT rib deflections do not reflect the actual human injury risk. However; for the impact forward to the bonnet leading edge, the TIPT seems applicable without further modifications. The test and assessment procedures using the TIPT offer for the first time the possibility of replicating the kinematics of a pedestrian thorax with a component test. The developed assessment scheme gives a first indication on how the risk for thoracic injuries could be implemented within the Euro NCAP Box 3 assessment. Future development of the TIPT may focus on implementing a rib cage that can deflect in all axes in a humanlike way.