Refine
Document Type
- Conference Proceeding (14)
- Article (2)
- Working Paper (2)
- Book (1)
Keywords
- Conference (9)
- Deutschland (9)
- Germany (9)
- Injury (9)
- Konferenz (9)
- Verletzung (9)
- Anfahrversuch (8)
- Safety (8)
- Sicherheit (8)
- Frontalzusammenstoß (7)
Institute
- Sonstige (14)
- Abteilung Fahrzeugtechnik (12)
The share of high-tensile steel in car bodies has increased over the last years. While occupant safety has generally benefited from this measure, there is a potential risk that, as a result, rescue time may increase considerably. In more than 60% of all car occupant fatalities a technical rescue has been necessary. These are in particular those cases where occupants die immediately at the accident scene. Therefore, in these cases "rescue time" is a very sensitive parameter. In addition to the general analysis of the need of technical rescue and the actual rescue time depending on model years, the injury pattern of occupants requiring technical rescue will be analysed to provide advice for rescue teams. Furthermore, a detailed analysis of rescue measures for the most popular car models depending on the safety cell design is given.
The main objective of EC CASPER research project is to reduce fatalities and injuries of children travelling in cars. Accidents involving children were investigated, modelling of human being and tools for dummies were advanced, a survey for the diagnosis of child safety was carried out and demands and applications were analysed. From the many research tasks of the CASPER project, the intention of this paper is to address the following: • In-depth investigation of accidents and accident reconstruction. These will provide important points for the injury risk curve, in order to improve it. Different accident investigation teams collected data from real road accidents, involving child car passengers, in five different European countries. Then, a selection of the most appropriate cases for the injury risk curve and the purposes of the project was made for an in-depth analysis. The final stage of this analysis was to conduct an accident reconstruction to validate the results obtained. The in-depth analysis included on-scene accident investigation, creating virtual simulations of the accident/possible reconstruction, and conducting the reconstruction. In the cases of successful reconstructions, new points were introduced to the injury risk curves. Accident reconstructions of selected cases were carried out in test laboratories as the next step following in-depth road accident investigation. These cases were reconstructed using similar child restraint systems (CRS) and the same type make and model as in the real accidents. Reconstructing real cases has several limitations, such as crash angle, cars" approximation paths and crash speed. However, a few changes and applications on the testing conditions were applied to reduce the limitations and improved the representations of the real accidents. After conducting the reconstructions, a comparison between the deformations of the cars on the real accident and the vehicles from the reconstructions was made. Additionally, a correlation between the data captured from the dummies and the injury data from the real accident was sought. This finalises an in-depth analysis of the accident, which will provide new relevant points to the injury risk curve. The CASPER project conducted a large research programme on child safety. On technical points, a promising research area is the developing injury risk curves as a result of in-depth accident investigations and reconstructions. This abstract was written whilst the project was not yet finished and final results are not yet known, but they will be available by the time of the conference. All the works and findings will not necessarily be integrated in the industrial versions of evaluation tools as the CASPER project is a research program.
The misuse of CRS (child restraint system) is one of the most urgent problems in connection of child safety in cars. Numerous field studies show that more than two thirds of all CRS are used in a wrong way. This misuse could lead to serious injuries for the children. Surprisingly the quality of CRS use is coded much better in accident data (e.g. GIDAS) than the results of observatory field studies show. It is expected that misuse of CRS was not detected by the accident teams in a large number of the cases. An essential part in improving child seats and their usability is the knowledge of the relation between misuse and resulting injuries. For that the analysis and experimental reconstruction of accidents is an important part. For allowing an exact experimental accident reconstruction, it is necessary to have detailed information about the securing situation of the child and about the installation of the CRS in the car.
Since a number of human models have been developed it appears sensible to use these models also in the accident analysis. Especially the understanding of injury mechanisms and probably even injury risk curves can be significantly improved when interesting accidents are reconstructed using human body models. However, an important limitation for utilising human models for accident reconstruction is the effort needed to develop detailed FE models of the accident partners or to prepare the human model reconstruction by running physical accident reconstructions. The proposed approach for using human models for accident reconstruction is to use simplified and parametric car models. These models can be adapted to the crash opponents in a fast and cost effective way. Although, accuracy is less compared to detailed FE models, the relevant change in velocity can be simulated well, indicating that the computation of a detailed crash pulse is not needed. Two frontal impact test accidents that were reconstructed experimentally and using the parametric car models are indicating sufficient correlation of the adapted parametric car models with the full scale crash reconstructions. However, further developments of the parametric models to be capable for the use in lateral impacts and rear impacts are needed. For the PC Crash simulation runs the output sampling rate is too large to allow sufficient analysis. In addition the performance appears to be too general.
In general the passive safety capability is much greater in newer versus older cars due to the stiff compartment preventing intrusion in severe collisions. However, the stiffer structure which increases the deceleration can lead to a change in injury patterns. In order to analyse possible injury mechanisms for thoracic and lumbar spine injuries, data from the German Inâ€Depth Accident Study (GIDAS) were used in this study. A twoâ€step approach of statistical and caseâ€byâ€case analysis was applied for this investigation. In total 4,289 collisions were selected involving 8,844 vehicles, 5,765 injured persons and 9,468 coded injuries. Thoracic and lumbar spine injuries such as burst, compression or dislocation fractures as well as soft tissue injuries were found to occur in frontal impacts even without intrusion to the passenger compartment. If a MAIS 2+ injury occurred, in 15% of the cases a thoracic and/or lumbar spine injury is included. Considering AIS 2+ thoracic and lumbar spine, most injuries were fractures and occurred in the lumbar spine area. From the case by case analyses it can be concluded that lumbar spine fractures occur in accidents without the engagement of longitudinals, lateral loading to the occupant and/or very severe accidents with MAIS being much higher than the spine AIS.
To improve vehicle safety in frontal collisions, the crash compatibility between the colliding vehicles is crucial. Compatibility aims to improve both the self and partner protection properties of vehicles. Although compatibility has received worldwide attention for many years, no final assessment approach has been defined. Within the Frontal Impact and Compatibility Assessment Research (FIMCAR) project, different frontal impact test procedures (offset deformable barrier [ODB] test as currently used for Economic Commission for Europe [ECE] R94, progressive deformable barrier test as proposed by France for a new ECE regulation, moveable deformable barrier test as discussed worldwide, full-width rigid barrier test as used in Federal Motor Vehicle Safety Standard [FMVSS] 208, and full-width deformable barrier test) were analyzed regarding their potential for future frontal impact legislation. The research activities focused on car-to-car frontal impact accidents based on accident investigations involving newer cars. Test procedures were developed with both a crash test program and numerical simulations. The proposal from FIMCAR is to use a full-width test procedure with a deformable element and compatibility metrics in combination with the current offset test as a frontal impact assessment approach that also addresses compatibility. By adding a full-width test to the current ODB test it is possible to better address the issues of structural misalignment and injuries resulting from high acceleration accidents as observed in the current fleet. The estimated benefit ranges from a 5 to 12 percent reduction of fatalities and serious injuries resulting from frontal impact accidents. By using a deformable element in the full-width test, the test conditions are more representative of real-world situations with respect to acceleration pulse, restraint system triggering time, and deformation pattern of the front structure. The test results are therefore expected to better represent real-world performance of the tested car. Furthermore, the assessment of the structural alignment is more robust than in the rigid wall test.
Mit der flächendeckenden Einführung des Beifahrerairbags ergab sich das Problem der nachträglich festgestellten Inkompatibilität mit rückwärts gerichten Kindersitzen. Zahlreiche tödliche Unfälle mit Babyschalen, insbesondere in den USA, führten unter anderem dazu, dass in den Mitgliedsstaaten der Europäischen Union die Beförderung von Kindern in einem rückwärtsgerichteten Kinderschutzsystem auf einem mit Frontairbag geschützten Autositz untersagt wurde, sofern der Airbag nicht deaktiviert wurde. Heute gibt es eine Vielzahl an Möglichkeiten, die dem Nutzer zur Abschaltung des Airbags zur Verfügung stehen. Mit der Notwendigkeit der Abschaltung ergibt sich die Gefahr zweier Arten der Fehlbenutzung: die Beförderung eines Kindes in einer Babyschale trotz aktivierten Airbags beziehungsweise die Mitfahrt eines erwachsenen Insassen trotz deaktivierten Airbags. Im Rahmen dieser Studie wurden zu den beiden Fehlbenutzungsarten Beobachtungs- und Befragungsstudien durchgeführt, Unfalldaten in Hinblick auf die Problematik der Fehlbenutzung der Airbagabschaltung analysiert und Versuche zur erneuten Bewertung des Risikos, das durch heutige und zukünftige Airbagsysteme ausgeht, durchgeführt. In den Umfragen ließen sich nur schwer Daten zum Missbrauch bei der Beförderung von Kindern mit Airbag auf dem Beifahrersitz erfassen. Es kommt insgesamt zu nur wenigen Fällen des Transports eines Kindes auf dem Beifahrersitz mit aktivem Airbag, was zum einen an der hohen Abschaltquote des Beifahrerairbags liegt, zum anderen an der Präferenz der Eltern, die Kinder auf dem Rücksitz zu transportieren. Der Großteil dieser Fehlbenutzungsfälle entsteht in älteren Pkw, die einen Werkstattaufenthalt für die Deaktivierung/Aktivierung erfordern. Keine Missbräuche beziehungsweise technische Fehler fanden sich bei den Systemen mit automatischer Sitzerkennung. Der überwiegende Anteil der Missbrauchsfälle bei den Modellen mit manueller Umschaltmöglichkeit geht offenbar auf Vergessen zurück. Der Missbrauch zweiter Art wird ebenfalls wirkungsvoll durch automatische Systeme verhindert. Bei dieser Beförderungskonstellation ergibt sich jedoch praktisch immer ein Problem, wenn der Beifahrerairbag in einer Werkstatt deaktiviert wurde. Die dadurch für einen erwachsenen Mitfahrer entstehende Gefährdung wird als weniger gravierend eingeschätzt. Bei der manuellen Umschaltung im Fahrzeug verbleibt ebenfalls ein Vergessensproblem wie beim Missbrauch erster Art. Auch die Unfallanalyse deutet auf eine geringe Fehlbenutzungsquote hin. Von den untersuchten GIDAS-Frontalaufprallunfällen mit über 300 betroffenen Kindern nutzten lediglich 24 Kinder den Beifahrerplatz in einem Auto, das mit einem Beifahrerairbag ausgestattet war. In den meisten Fällen war der Airbag vorschriftsmäßig deaktiviert. In den nachgewiesenen Fehlbenutzungsfällen waren die Unfallfolgen für die betroffenen Babys gering. Die untersuchten Einzelfälle zeigen jedoch die tödliche Gefahr, die vom Beifahrerairbag ausgehen kann. Auf der technischen Seite gab es im Lauf der letzten Jahre grundsätzliche Veränderungen im Bereich der Gestaltung des Beifahrerairbags. Während bei der früheren Einbauposition des Airbags die Schale direkt angeschossen wurde, entfaltet sich dieser heutzutage eher nach oben, stützt sich an der Windschutzscheibe ab und kommt danach erst mit der Schale in Kontakt. Da er in diesem Zustand aber schon weitestgehend voll entfaltet ist, besitzt er zu diesem Zeitpunkt kaum noch die Aggressivität, die bei den Beifahrerairbags der ersten Generation beobachtet werden konnte, und stellt somit wahrscheinlich eine geringere Gefahr für das Kleinkind in der Babyschale dar. Damit lässt sich ein deutlicher Trend in Richtung weniger gefährlicher Airbags erkennen. Der Originalbericht enthält als Anhänge den Abdruck des Expertenfragebogen, die Zusammenfassung der Expertenbefragung, den Umdruck der Online-Befragung sowie den Fragebogen der Feldbefragung "Kindersitze und Airbag auf dem Beifahrersitz". Auf die Widergabe dieser Anhänge wurde in der vorliegenden Veröffentlichung verzichtet. Sie liegen bei der Bundesanstalt für Straßenwesen vor und sind dort einsehbar. Verweise auf die Anhänge im Berichtstext wurden zur Information des Lesers beibehalten.
The GRSP informal group on child restraint systems (CRS) finalised phase 1 of a new regulation for the homologation of CRS . This regulation is the subject of several discussions concerning the safety benefits and the advantages and disadvantages that certain specific points may bring. However, these discussions are sometimes not based on scientific facts and do not consider the whole package but only single items. Based on the experience of the CASPER partners in the fields of human behaviour, accident analysis, test procedures and biomechanics in the area of child safety, a consideration of the safety benefits of phase 1 of the new regulation and recommendations for phase 2 will be given.
Within the process of integrating passenger airbags in the vehicle fleet a problem of compatibility between the passenger airbag and rear-facing child restraint systems was recognised. Especially in the US several accidents with children killed by the passenger airbag were recorded. Taking into account these accidents the deactivation of a present passenger airbag is mandatory if a child is carried in a rear-facing child restraint system at the front passenger seat in all member states of the European Union. This rule is in force since the deadline of 2003/20/EC at the latest. In the past a passenger airbag either could not be disabled or could only be disabled by a garage. Today there are a lot of different possibilities for the car driver himself to disable the airbag. Solutions like an on/off-switch or the automatic detection of a child restraint system are mentioned as an example. Taking into account the need for the deactivation of front passenger airbags two types of misuse can occur: transportation of an infant while the airbag is (still) enabled and transportation of an adult, while the airbag is disabled, respectively. Within a research project funded by BASt both options of misuse were analysed utilising two different types of surveys amongst users (field observations and interviews, Internet-questionnaires). In addition both analysis of accident data and crash tests for an updated assessment of the injury risk caused by the front passenger airbag were conducted. Both surveys indicate a low risk of misuse. Most of the misuse cases were observed in older cars, which offer no easy way to disable the airbag. For systems, which detect a child seat automatically, no misuse could be found. The majority of misuses in cars equipped with a manual switch were caused by reasons of oblivion. Also the accident analysis indicates a minor risk of misuse. From more than 300 cases of the GIDAS accident sample that were analysed, only 24 children were using the front passenger seat in cars equipped with a front passenger airbag. In most of these cases the airbag was deactivated. When misuse occurred the injury severity was low. However, when analysing German single accidents the fatality risk caused by the front passenger airbag became obvious. From the technical point of view, there were important changes in the design of passenger airbags in recent years. Not only volume and shape were modified, but also the mounting position of the entire airbag module was changed fundamentally. Even if these findings do not allow obtaining general conclusions, a clear tendency of less danger by airbags could be identified. For future vehicle development a safe combination of airbags and rear faced baby seats seems to be possible in the long term. This would mean that both types of misuse could be eliminated. For parents an easier use of child seat and car would be the result.
The off-set assessment procedure potentially contributes to the FIMCAR objectives to maintain the compartment strength and to assess load spreading in frontal collisions. Furthermore it provides the opportunity to assess the restraint system performance with different pulses if combined with a full-width assessment procedure in the frontal assessment approach. Originally it was expected that the PDB assessment procedure would be selected for the FIMCAR assessment approach. However, it was not possible to deliver a compatibility metric in time so that the current off-set procedure (ODB as used in UNECE R94) with some minor modifications was proposed for the FIMCAR Assessment Approach. Nevertheless the potential to assess load spreading, which appears not to be possible with any other assessed frontal impact assessment procedure was considered to be still high. Therefore the development work for the PDB assessment procedure did not stop with the decision not to select the PDB procedure. As a result of the decisions to use the current ODB and to further develop the PDB procedure, both are covered within this deliverable. The deliverable describes the off-set test procedure that will be recommended by FIMCAR consortium, this corresponds to the ODB test as it is specified in UN-ECE Regulation 94 (R94), i.e. EEVC deformable element with 40% overlap at a test speed of 56 km/h. In addition to the current R94 requirements, FIMCAR will recommend to introduce some structural requirements which will guarantee sufficiently strong occupant compartments by enforcing the stability of the forward occupant cell. With respect to the PDB assessment procedure a new metric, Digital Derivative in Y direction - DDY, was developed, described, analysed, and compared with other metrics. The DDY metric analyses the deformation gradients laterally across the PDB face. The more even the deformation, the lower the DDY values and the better the metric- result. In order analyse the different metrics, analysis of the existing PDB test results and the results of the performed simulation studies was performed. In addition, an assessment of artificial deformation profiles with the metrics took place. This analysis shows that there are still issues with the DDY metric but it appears that it is possible to solve them with future optimisations. For example the current metric assesses only the area within 60% of the half vehicle width. For vehicles that have the longitudinals further outboard, the metric is not effective. In addition to the metric development, practical issues of the PDB tests such as the definition of a scan procedure for the analysis of the deformation pattern including the validation of the scanning procedure by the analysis of 3 different scans at different locations of the same barrier were addressed. Furthermore the repeatability and reproducibility of the PDB was analysed. The barrier deformation readings seem to be sensitive with respect to the impact accuracy. In total, the deliverable is meant to define the FIMCAR off-set assessment procedure and to be a starting point for further development of the PDB assessment procedure.