Refine
Document Type
- Working Paper (3)
- Conference Proceeding (1)
Keywords
- Anfahrversuch (4)
- Impact test (veh) (4)
- Bewertung (3)
- Compatibility (3)
- Evaluation (assessment) (3)
- Fahrzeug (3)
- Kompatibilität (3)
- Method (3)
- Safety (3)
- Schlag (3)
Institute
- Abteilung Fahrzeugtechnik (3)
- Sonstige (1)
The off-set assessment procedure potentially contributes to the FIMCAR objectives to maintain the compartment strength and to assess load spreading in frontal collisions. Furthermore it provides the opportunity to assess the restraint system performance with different pulses if combined with a full-width assessment procedure in the frontal assessment approach. Originally it was expected that the PDB assessment procedure would be selected for the FIMCAR assessment approach. However, it was not possible to deliver a compatibility metric in time so that the current off-set procedure (ODB as used in UNECE R94) with some minor modifications was proposed for the FIMCAR Assessment Approach. Nevertheless the potential to assess load spreading, which appears not to be possible with any other assessed frontal impact assessment procedure was considered to be still high. Therefore the development work for the PDB assessment procedure did not stop with the decision not to select the PDB procedure. As a result of the decisions to use the current ODB and to further develop the PDB procedure, both are covered within this deliverable. The deliverable describes the off-set test procedure that will be recommended by FIMCAR consortium, this corresponds to the ODB test as it is specified in UN-ECE Regulation 94 (R94), i.e. EEVC deformable element with 40% overlap at a test speed of 56 km/h. In addition to the current R94 requirements, FIMCAR will recommend to introduce some structural requirements which will guarantee sufficiently strong occupant compartments by enforcing the stability of the forward occupant cell. With respect to the PDB assessment procedure a new metric, Digital Derivative in Y direction - DDY, was developed, described, analysed, and compared with other metrics. The DDY metric analyses the deformation gradients laterally across the PDB face. The more even the deformation, the lower the DDY values and the better the metric- result. In order analyse the different metrics, analysis of the existing PDB test results and the results of the performed simulation studies was performed. In addition, an assessment of artificial deformation profiles with the metrics took place. This analysis shows that there are still issues with the DDY metric but it appears that it is possible to solve them with future optimisations. For example the current metric assesses only the area within 60% of the half vehicle width. For vehicles that have the longitudinals further outboard, the metric is not effective. In addition to the metric development, practical issues of the PDB tests such as the definition of a scan procedure for the analysis of the deformation pattern including the validation of the scanning procedure by the analysis of 3 different scans at different locations of the same barrier were addressed. Furthermore the repeatability and reproducibility of the PDB was analysed. The barrier deformation readings seem to be sensitive with respect to the impact accuracy. In total, the deliverable is meant to define the FIMCAR off-set assessment procedure and to be a starting point for further development of the PDB assessment procedure.
For the assessment of vehicle safety in frontal collisions compatibility (which consists of self and partner protection) between opponents is crucial. Although compatibility has been analysed worldwide for over 10 years, no final assessment approach has been defined to date. Taking into account the European Enhanced Vehicle safety Committee (EEVC) compatibility and frontal impact working group (WG15) and the FP5 VC-COMPAT project activities, two test approaches have been identified as the most promising candidates for the assessment of compatibility. Both are composed of an off-set and a full overlap test procedure. In addition another procedure (a test with a moving deformable barrier) is getting more attention in current research programmes. The overall objective of the FIMCAR project is to complete the development of the candidate test procedures and propose a set of test procedures suitable for regulatory application to assess and control a vehicle- frontal impact and compatibility crash safety. In addition an associated cost benefit analysis should be performed. The objectives of the work reported in this deliverable were to review existing full-width test procedures and their discussed compatibility metrics, to report recent activities and findings with respect to full-width assessment procedures and to assess test procedures and metrics. Starting with a review of previous work, candidate metrics and associated performance limits to assess a vehicle- structural interaction potential, in particular its structural alignment, have been developed for both the Full Width Deformable Barrier (FWDB) and Full Width Rigid Barrier (FWRB) tests. Initial work was performed to develop a concept to assess a vehicle- frontal force matching. However, based on the accident analyses performed within FIMCAR frontal force matching was not evaluated as a first priority and thus in line with FIMCAR strategy the focus was put on the development of metrics for the assessment of structural interaction which was evaluated as a first priority.
For the assessment of vehicle safety in frontal collisions compatibility (which consists of self and partner protection) between opponents is crucial. Although compatibility has been analysed worldwide for over 10 years, no final assessment approach has been defined to date. Taking into account the European Enhanced Vehicle safety Committee (EEVC) compatibility and the final report to the steering committee on frontal impact [Faerber 2007] and the FP5 VC-COMPAT[Edwards 2007] project activities, two test approaches were identified as the most promising candidates for the assessment of compatibility. Both are composed of an off-set and a full overlap test procedure. In addition another procedure (a test with a moving deformable barrier) is getting more attention in current research programmes. The overall objective of the FIMCAR project is to complete the development of the candidate test procedures and propose a set of test procedures suitable for regulatory application to assess and control a vehicle- frontal impact and compatibility crash safety. In addition an associated cost benefit analysis will be performed. In the FIMCAR Deliverable D 3.1 [Adolph 2013] the development and assessment of criteria and associated performance limits for the full width test procedure were reported. In this Deliverable D3.2 analyses of the test data (full width tests, car-to-car tests and component tests), further development and validation of the full width assessment protocol and development of the load cell and load cell wall specification are reported. The FIMCAR full-width assessment procedure consists of a 50 km/h test against the Full Width Deformable Barrier (FWDB). The Load Cell Wall behind the deformable element assesses whether or not important Energy Absorbing Structures are within the Common Interaction Zone as defined based on the US part 581 zone. The metric evaluates the row forces and requires that the forces directly above and below the centre line of the Common Interaction Zone exceed a minimum threshold. Analysis of the load spreading showed that metrics that rely on sum forces of rows and columns are within acceptable tolerances. Furthermore it was concluded that the Repeatability and Reproducibility of the FWDB test is acceptable. The FWDB test was shown to be capable to detect lower load paths that are beneficial in car-to-car impacts.
Since a number of human models have been developed it appears sensible to use these models also in the accident analysis. Especially the understanding of injury mechanisms and probably even injury risk curves can be significantly improved when interesting accidents are reconstructed using human body models. However, an important limitation for utilising human models for accident reconstruction is the effort needed to develop detailed FE models of the accident partners or to prepare the human model reconstruction by running physical accident reconstructions. The proposed approach for using human models for accident reconstruction is to use simplified and parametric car models. These models can be adapted to the crash opponents in a fast and cost effective way. Although, accuracy is less compared to detailed FE models, the relevant change in velocity can be simulated well, indicating that the computation of a detailed crash pulse is not needed. Two frontal impact test accidents that were reconstructed experimentally and using the parametric car models are indicating sufficient correlation of the adapted parametric car models with the full scale crash reconstructions. However, further developments of the parametric models to be capable for the use in lateral impacts and rear impacts are needed. For the PC Crash simulation runs the output sampling rate is too large to allow sufficient analysis. In addition the performance appears to be too general.