Refine
Keywords
- Airbag (1)
- Anfahrversuch (1)
- Calibration (1)
- Conference (1)
- Deformable barrier system (impact test) (1)
- Deformierbare Barriere (Anpralltest) (1)
- Eichung (1)
- Empfindlichkeit (1)
- Fahrzeug (1)
- Forschungsarbeit (1)
The objective was to develop and validate a crash trolley (reference vehicle) equipped with a compartment and a full restraint system for driver and front seat passenger which can be used in full scale crash testing. Furthermore, the crash trolley should have a suspension to show rotation and nick effects similar to real vehicles. Within the development phase the reference vehicle was build based on a European family car. Special attention was needed to provide appropriate strength to the trolley and its suspension. The reference vehicle is equipped with a restraint system consisting of airbags, pedals, seats, dashboard, and windscreen. On the front of the vehicle different crash barriers can be installed to provide miscellaneous deceleration pulses. For the validation phase a series of low and high speed crash tests with HIII dummies were conducted and compared with full scale tests. For the comparison deceleration pulse, dummy numbers and vehicle movement were analyzed. Validation tests with velocities up to 60 km/h showed promising results. The compartment and the suspension systems stayed stable. Rotation effects were comparable with full scale car crash tests. The airbags and seat belt system worked reasonable. The acceleration pulse compared to an Euro NCAP test had a similar characteristic but was in general slightly lower. After the successful validation the reference vehicle is already in use in different studies in the field of vehicle safety research at BASt.
Airbags are, together with the three-point belt, the most effective passive safety equipment of vehicles. However, literature shows that sound pressure levels of up to 170 dB can occur during airbag deployment. A literature review revealed no systematic experimental data on possible hearing loss by airbag deployment, that also takes any other crash accompanied noise into account, such as deformation and impact noise. Also the rising number of airbags per vehicle resulting in a higher number of deployed airbags in an accident was not addressed with respect to hearing loss. Thus, an extensive test matrix of noise measurements during airbag deployments was conducted including onboard measuring during crashes and static measurements. Dynamic and static experiments with single and multiple airbag deployments were conducted. The results of this study show, that in the analyzed crash constellations the acoustic emission of the collision as well as the car deformation can trigger the stapedius reflex before the airbag deployment. The stapedius reflex protects the inner ear at least partially in case of dangerous sound levels. However, it seems that multiple airbag deployments in a short sequence pose a considerable risk for hearing impairments despite the fully contracted stapedius muscle. Further and in line with Price et al. (2013) it was found that the risk of hearing loss is lower with closed windows. The analysis of patient and accident data showed no link between airbag deployment and hearing loss. This might be caused by low case numbers of reported hearing loss problems up to now. In conclusion the results show that a singular analysis of the sound pressure of airbag deployments without crash accompanied noises is not sufficient as the protective effect of the stapedius reflex is neglected. Still, successive airbag deployments in a short timeframe raise the risk of hearing loss. Further investigation on hearing impairment due to airbag deployment and triggering of the stapedius reflex is needed and the data acquisition of accidents and patients should consider hearing loss aspects.