Refine
Document Type
- Conference Proceeding (9)
- Article (1)
Keywords
- Injury (7)
- Verletzung (7)
- Alte Leute (6)
- Brustkorb (6)
- Dummy (6)
- Thorax (6)
- Anthropometric dummy (5)
- Old people (5)
- Simulation (5)
- Insasse (4)
Institute
The United Nations Economic Commission for Europe Informal Group on GTR No. 7 Phase 2 are working to define a build level for the BioRID II rear impact (whiplash) crash test dummy that ensures repeatable and reproducible performance in a test procedure that has been proposed for future legislation. This includes the specification of dummy hardware, as well as the development of comprehensive certification procedures for the dummy. This study evaluated whether the dummy build level and certification procedures deliver the desired level of repeatability and reproducibility. A custom-designed laboratory seat was made using the seat base, back, and head restraint from a production car seat to ensure a representative interface with the dummy. The seat back was reinforced for use in multiple tests and the recliner mechanism was replaced by an external spring-damper mechanism. A total of 65 tests were performed with 6 BioRID IIg dummies using the draft GTR No.7 sled pulse and seating procedure. All dummies were subject to the build, maintenance, and certification procedures defined by the Informal Group. The test condition was highly repeatable, with a very repeatable pulse, a well-controlled seat back response, and minimal observed degradation of seat foams. The results showed qualitatively reasonable repeatability and reproducibility for the upper torso and head accelerations, as well as for T1 Fx and upper neck Fx. However, reproducibility was not acceptable for T1 and upper neck Fz or for T1 and upper neck My. The Informal Group has not selected injury or seat assessment criteria for use with BioRID II, so it is not known whether these channels would be used in the regulation. However, the ramping-up behavior of the dummy showed poor reproducibility, which would be expected to affect the reproducibility of dummy measurements in general. Pelvis and spine characteristics were found to significantly influence the dummy measurements for which poor reproducibility was observed. It was also observed that the primary neck response in these tests was flexion, not extension. This correlates well with recent findings from Japan and the United States showing a correlation between neck flexion and injury in accident replication simulations and postmortem human subjects (PMHS) studies, respectively. The present certification tests may not adequately control front cervical spine bumper characteristics, which are important for neck flexion response. The certification sled test also does not include the pelvis and so cannot be used to control pelvis response and does not substantially load the lumbar bumpers and so does not control these parts of the dummy. The stiffness of all spine bumpers and of the pelvis flesh should be much more tightly controlled. It is recommended that a method for certifying the front cervical bumpers should be developed. Recommendations are also made for tighter tolerance on the input parameters for the existing certification tests.
A reduction of around 48% of all road fatalities was achieved in Europe in the past years including a reduced number of fatalities with an older age. However, among all road fatalities, the proportion of elderly is steadily increasing. In an ageing society, the European (Horizon2020) project SENIORS aims to improve the safe mobility of older road users, who have different transportation habits compared to other age groups. To increase their level of safe mobility by determining appropriate requirements for vehicle safety systems, the characteristics of current road traffic collisions involving the elderly and the injuries that they sustain need to be understood in detail. Hereby, the paper focuses on their traffic participation as pedestrian, cyclist or passenger car occupant. Following a literature review, several national and international crash databases and hospital statistics have been analysed to determine the body regions most frequently and severely injured, specific injuries sustained and types of crashes involved, always comparing older road users (65 years and more) with mid-aged road users (25-64 years). The most important crash scenarios were highlighted. The data sources included European statistics from CARE, data on national level from Germany, Sweden, Italy, United Kingdom and Spain as well as in-depth crash information from GIDAS (Germany), RAIDS (UK), CIREN and NASS-CDS (US). In addition, familiar hospital data from Germany (TraumaRegister DGU-®), Italy (Italian Register of Acute Traumas) and UK hospital statistics (TARN) were included in the study to gain further insight into specific injury patterns. Comprehensive data analyses were performed showing injury patterns of older road users in crashes. When comparing with mid-aged road users, all databases showed that the thorax body region is of particularly high importance for the older car occupant with injury severities of AIS 2 or AIS 3+, whereas the body regions lower extremities, head and thorax need to be considered for the older pedestrians and cyclists. Besides these comparisons, the most frequent and severe top 5 injuries were highlighted per road user group. Further, the most important crash configurations were identified and injury risk functions are provided per age group and road user group. Although several databases have been analysed, the picture on the road safety situation of older road users in Europe was not complete, as only Western European data was available. The linkage between crash data and hospital data could only be made on a general level as their inclusion criteria were quite different.
Europe has benefited from a decreasing number of road traffic fatalities. However, the proportion of older road users increases steadily. In an ageing society, the SENIORS project aims to improve the safe mobility of older road users by determining appropriate requirements towards passive vehicle safety systems. Therefore, the characteristics of road traffic crashes involving the elderly people need to be understood. This paper focuses on car occupants and pedestrians or cyclists in crashes with modern passenger cars. Ten crash databases and four hospital statistics from Europe have been analysed to answer the questions on which body regions are most frequently and severely injured in the elderly, and specific injuries sustained by always comparing older (65 years and above) with midâ€aged road users (25â€64 years). It was found that the body region thorax is of particularly high importance for the older car occupant with injury severities of AIS2 or AIS3+, where as the lower extremities, head and the thorax need to be considered for older pedestrians and cyclists. Further, injury risk functions were provided. The hospital data analysis showed less difference between the age groups. The linkage between crash and hospital data could only be made on a general level as their inclusion criteria were quite different.
One main objective of the EU-Project SENIORS is to provide improved methods to assess thoracic injury risk to elderly occupants. In contribution to this task paired simulations with a THOR dummy model and human body model will be used to develop improved thoracic injury risk functions. The simulation results can provide data for injury criteria development in chest loading conditions that are underrepresented in PMHS test data sets that currently proposed risk functions are based on. To support this approach a new simplified generic but representative sled test fixture and CAE model for testing and simulation were developed. The parameter definition and evaluation of this sled test fixture and model is presented in this paper. The justification and definition of requirements for this test set-up was based on experience from earlier studies. Simple test fixtures like the gold standard sled fixture are easy to build and also to model in CAE, but provide too severe belt-only loading. On the other hand a vehicle buck including production components like airbag and seat is more representative, but difficult to model and to be replicated at a different laboratory. Furthermore some components might not be available for physical tests at later stage. The basis of the SENIORS generic sled test set-up is the gold standard fixture with a cable seat back and foot rest. No knee restraint was used. The seat pan design was modified including a seat ramp. The three-point belt system had a generic adjustable load limiter. A pre-inflated driver airbag assembly was developed for the test fixture. Results of THOR test and simulations in different configurations will be presented. The configurations include different deceleration pulses. Further parameter variations are related to the restraint system including belt geometry and load limiter levels. Additionally different settings of the generic airbag were evaluated. The test set-up was evaluated and optimized in tests with the THOR-M dummy in different test configurations. Belt restraint parameters like D-ring position and load limiter setting were modified to provide moderate chest loading to the occupant. This resulted in dummy readings more representative of the loading in a contemporary vehicle than most available PMHS sled tests reported in the literature. However, to achieve a loading configuration that exposes the occupant to even less severe loading comparable to modern vehicle restraints it might be necessary to further modify the test set-up. The new generic sled test set-up and a corresponding CAE model were developed and applied in tests and simulations with THOR. Within the SENIORS project with this test set-up also volunteer and PMHS as well as HBM simulations are performed, which will be reported in other publications. The test environment can contribute in future studies to the assessment of existing and new frontal impact dummies as well as dummy improvements and related instrumentation. The test set-up and model could also serve as a new standard test environment for PMHS and volunteer tests as well as HBM simulations.
Thoracic injuries are one of the main causes of fatally and severely injured casualties in car crashes. Advances in restraint system technology and airbags may be needed to address this problem; however, the crash test dummies available today for studying these injuries have limitations that prevent them from being able to demonstrate the benefits of such innovations. THORAX-FP7 was a collaborative medium scale project under the European Seventh Framework. It focused on the mitigation and prevention of thoracic injuries through an improved understanding of the thoracic injury mechanisms and the implementation of this understanding in an updated design for the thorax-shoulder complex of the THOR dummy. The updated dummy should enable the design and evaluation of advanced restraint systems for a wide variety (gender, age and size) of car occupants. The hardware development involved five steps: 1) Identification of the dominant thoracic injury types from field data, 2) Specification of biomechanical requirements, 3) Identification of injury parameters and necessary instrumentation, 4) Dummy hardware development and 5) Evaluation of the demonstrator dummy. The activities resulted in the definition of new biofidelity and instrumentation requirements for an updated thorax-shoulder complex. Prototype versions were realised and implemented in three THOR dummies for biomechanical evaluation testing. This paper documents the hardware developments and biomechanical evaluation testing carried out.
In general the passive safety capability is much greater in newer versus older cars due to the stiff compartment preventing intrusion in severe collisions. However, the stiffer structure which increases the deceleration can lead to a change in injury patterns. In order to analyse possible injury mechanisms for thoracic and lumbar spine injuries, data from the German Inâ€Depth Accident Study (GIDAS) were used in this study. A twoâ€step approach of statistical and caseâ€byâ€case analysis was applied for this investigation. In total 4,289 collisions were selected involving 8,844 vehicles, 5,765 injured persons and 9,468 coded injuries. Thoracic and lumbar spine injuries such as burst, compression or dislocation fractures as well as soft tissue injuries were found to occur in frontal impacts even without intrusion to the passenger compartment. If a MAIS 2+ injury occurred, in 15% of the cases a thoracic and/or lumbar spine injury is included. Considering AIS 2+ thoracic and lumbar spine, most injuries were fractures and occurred in the lumbar spine area. From the case by case analyses it can be concluded that lumbar spine fractures occur in accidents without the engagement of longitudinals, lateral loading to the occupant and/or very severe accidents with MAIS being much higher than the spine AIS.
In the EC FP6 Integrated Project Advanced Protection Systems, APROSYS, the first WorldSID small female prototype was developed and evaluated by BASt, FTSS, INRETS, TRL and UPM-INSIA during 2006 and 2007. Results were presented at the ESV 2007 conference (Been et al., 2007). With the prototype dummy scoring a biofidelity rating higher than 6.7 out of 10 according to ISO/TR9790, the results were very promising. Also opportunities for further development were identified by the evaluation group. A revised prototype, Revision1, was subsequently developed in the 2007-2008 period to address comments from the evaluation group. The Revision1 dummy includes changes in the half arms and the suit (anthropometry and arm biomechanics), the thorax and abdomen ribs and sternum (rib durability), the abdomen/lumbar area and the lower legs (mass distribution). Also a two-dimensional chest deflection measurement system was developed to measure deflection in both lateral and anterior-posterior direction to improve oblique thorax loading sensitivity. Two Revision1 prototype dummies have now been evaluated by FTSS, TRL, UPM-INSIA and BASt. The updated prototype dummies were subjected to an extensive matrix of biomechanical tests, such as full body pendulum tests and lateral sled impact tests as specified by Wayne State University, Heidelberg University and Medical College of Wisconsin. The results indicated a significant improvement of dummy biofidelity. The overall dummy biofidelity in the ISO rating system has significantly improved from 6.7 to 7.6 on a scale between 0-10. The small female WorldSID has now obtained the same biofidelity rating as the WorldSID mid size male dummy. Also repeatability improved with respect to the prototype. In conclusion the recommended updates were all executed and all successfully contributed in achieving improved performance of the dummy.
To assess occupant safety in a crash test, criteria associating the measurements made with a crash test dummy to injury risk are necessary. To enable better protection of elderly car occupants the objective of this study was to develop improved thoracic injury criteria for the THOR average male dummy. The development of these criteria is usually based on matched dummy and Post Mortem Human Surrogate (PMHS) tests by relating the obtained PMHS injuries to dummy measurements. This approach is limited, since only a few tests in relevant loading conditions are available and any new test series requires high efforts to be performed due to their complexity and costs. To overcome these limitations and to extend the dataset for the development of THOR dummy chest injury risk functions a simulation-based approach was applied within the EC funded project SENIORS (Safety Enhanced Innovations For older Road Users - www.seniors-project.eu). Within this study frontal impact sled simulations with an FE model representing a THOR average male dummy and matched simulations with a human body model (HBM) representing an elderly car occupant were carried out. The HBM used for this study was the THUMS TUC with modified rib cage, which was developed in SENIORS. The modifications included material and geometry changes aiming to represent an elderly car occupant. The rib fracture risk was predicted with a deterministic approach whereby a rib was considered broken when the strain exceeded an age-dependent threshold. Furthermore, a probabilistic method was applied to predict the probability of sustaining a certain number of fractured ribs by comparing local strain values to the distribution of cortical rib ultimate strain. By relating the output from the HBM simulations to a multi-point dummy injury criterion, injury risk curves were calculated by statistical methods. The wide range of loading conditions resulted in the desired range of injuries and THOR ATD output. The number of fractured ribs predicted by the HBM based on the deterministic prediction method was between 0 and 15. Furthermore, the probabilistic risk for the number of rib fractures equal or greater than two, three or four was calculated for each load case. The THOR rib deflection criterion Rmax was between 18 and 56 mm, while the PC Score was in the range of 2.5 to 7.2. Based on these outputs new risk curves for the predicted deterministic (AIS2+/3+) and probabilistic injury risk were calculated. The new curves show reasonable shapes and significance that provide trust in their application. The new risk curves are compared to risk curves obtained by traditional methods. The results were found similar to previous injury risk functions based on physical tests, which gives a high level of confidence in the chosen approach. The simulation-based approach of matched ATD model vs. HBM simulation was successfully applied. Rmax curves show a slightly better quality than the injury criterion PC Score.
Thorax injury is one of main causes of serious injury in frontal collisions, especially for elderly car occupants. The anthropometric test device (ATD) THOR‐M provides chest deflection measurements at multiple locations, to assess the risk of thorax injury. For this purpose e, risk functions are needed that relate the potential criteria based on multipoint chest deflection measurement to in jury risk. Different thorax injury criteria and risk functions for THOR have been proposed [2‐3]. The criteria and functions are based on the traditional approach to developing injury risk functions using matched ATD and PMHS tests by relating the injury (number of fractures) to injury criteria. Regarding these studies, some limitations have been identified, in particular concerning the loading conditions of the data used (mainly 3‐point‐belt loading, high loading severity, out‐of‐date ATD versions. To extend the data set and overcome these limitations, a new approach for improved thorax injury criteria was applied within the EC‐funded project SENIORS. The new approach is based on matched frontal impact sled computer simulations with a model representing the latest THOR‐M ATD version, and matching simulations with a human body model (HBM) representing an elderly car occupant.
Test and assessment procedures for passive pedestrian protection based on developments by the European Enhanced Vehicle-safety Committee (EEVC) have been introduced in world-wide regulations and consumer test programmes, with considerable harmonization between these programmes. Nevertheless, latest accident investigations reveal a stagnation of pedestrian fatality numbers on European roads running the risk of not meeting the European Union- goal of halving the number of road fatalities by the year 2020. The branch of external road user safety within the EC-funded research project SENIORS under the HORIZON 2020 framework programme focuses on investigating the benefit of modifications to pedestrian test and assessment procedures and their impactors for vulnerable road users with focus on the elderly. Injury patterns of pedestrians and cyclists derived from the German In-Depth Accident Study (GIDAS) show a trend of AIS 2+ and AIS 3+ injuries getting more relevant for the thorax region in crashes with newer cars (Wisch et al., 2017), while maintaining the relevance for head and lower extremities. Several crash databases from Europe such as GIDAS and the Swedish Traffic Accident Data Acquisition (STRADA) also show that head, thorax and lower extremities are the key affected body regions not only for the average population but in particular for the elderly. Therefore, the SENIORS project is focusing on an improvement of currently available impactors and procedures in terms of biofidelity and injury assessment ability towards a better protection of the affected body regions, incorporating previous results from FP 6 project APROSYS and subsequent studies carried out by BASt. The paper describes the overall methodology to develop revised FE impactor models. Matched human body model and impactor simulations against generic test rigs provide transfer functions that will be used for the derivation of impactor criteria from human injury risk functions for the affected body regions. In a later step, the refined impactors will be validated by simulations against actual vehicle front-ends. Prototyping and adaptation of test and assessment procedures as well as an impact assessment will conclude the work of the project at the final stage. The work will contribute to an improved protection of vulnerable road users focusing on the elderly. The use of advanced human body models to develop applicable assessment criteria for the revised impactors is intended to cope with the paucity of actual biomechanical data focusing on elderly pedestrians. In order to achieve optimized results in the future, the improved test methods need to be implemented within an integrated approach, combining active with passive safety measures. In order to address the developments in road accidents and injury patterns of vulnerable road users, established test and assessment procedures need to be continuously verified and, where needed, to be revised. The demographic change as well as changes in the vehicle fleet, leading to a variation of accident scenarios, injury frequencies and injury patterns of vulnerable road users are addressed by the work provided by the SENIORS project, introducing updated impactors for pedestrian test and assessment procedures.