Refine
Keywords
- Anfahrversuch (2)
- Bewertung (2)
- Compatibility (2)
- Evaluation (assessment) (2)
- Fahrzeug (2)
- Impact test (veh) (2)
- Kompatibilität (2)
- Method (2)
- Safety (2)
- Schlag (2)
For the assessment of vehicle safety in frontal collisions compatibility (which consists of self and partner protection) between opponents is crucial. Although compatibility has been analysed worldwide for over 10 years, no final assessment approach has been defined to date. Taking into account the European Enhanced Vehicle safety Committee (EEVC) compatibility and frontal impact working group (WG15) and the FP5 VC-COMPAT project activities, two test approaches have been identified as the most promising candidates for the assessment of compatibility. Both are composed of an off-set and a full overlap test procedure. In addition another procedure (a test with a moving deformable barrier) is getting more attention in current research programmes. The overall objective of the FIMCAR project is to complete the development of the candidate test procedures and propose a set of test procedures suitable for regulatory application to assess and control a vehicle- frontal impact and compatibility crash safety. In addition an associated cost benefit analysis should be performed. The objectives of the work reported in this deliverable were to review existing full-width test procedures and their discussed compatibility metrics, to report recent activities and findings with respect to full-width assessment procedures and to assess test procedures and metrics. Starting with a review of previous work, candidate metrics and associated performance limits to assess a vehicle- structural interaction potential, in particular its structural alignment, have been developed for both the Full Width Deformable Barrier (FWDB) and Full Width Rigid Barrier (FWRB) tests. Initial work was performed to develop a concept to assess a vehicle- frontal force matching. However, based on the accident analyses performed within FIMCAR frontal force matching was not evaluated as a first priority and thus in line with FIMCAR strategy the focus was put on the development of metrics for the assessment of structural interaction which was evaluated as a first priority.
For the assessment of vehicle safety in frontal collisions compatibility (which consists of self and partner protection) between opponents is crucial. Although compatibility has been analysed worldwide for over 10 years, no final assessment approach has been defined to date. Taking into account the European Enhanced Vehicle safety Committee (EEVC) compatibility and the final report to the steering committee on frontal impact [Faerber 2007] and the FP5 VC-COMPAT[Edwards 2007] project activities, two test approaches were identified as the most promising candidates for the assessment of compatibility. Both are composed of an off-set and a full overlap test procedure. In addition another procedure (a test with a moving deformable barrier) is getting more attention in current research programmes. The overall objective of the FIMCAR project is to complete the development of the candidate test procedures and propose a set of test procedures suitable for regulatory application to assess and control a vehicle- frontal impact and compatibility crash safety. In addition an associated cost benefit analysis will be performed. In the FIMCAR Deliverable D 3.1 [Adolph 2013] the development and assessment of criteria and associated performance limits for the full width test procedure were reported. In this Deliverable D3.2 analyses of the test data (full width tests, car-to-car tests and component tests), further development and validation of the full width assessment protocol and development of the load cell and load cell wall specification are reported. The FIMCAR full-width assessment procedure consists of a 50 km/h test against the Full Width Deformable Barrier (FWDB). The Load Cell Wall behind the deformable element assesses whether or not important Energy Absorbing Structures are within the Common Interaction Zone as defined based on the US part 581 zone. The metric evaluates the row forces and requires that the forces directly above and below the centre line of the Common Interaction Zone exceed a minimum threshold. Analysis of the load spreading showed that metrics that rely on sum forces of rows and columns are within acceptable tolerances. Furthermore it was concluded that the Repeatability and Reproducibility of the FWDB test is acceptable. The FWDB test was shown to be capable to detect lower load paths that are beneficial in car-to-car impacts.