Refine
Year of publication
Document Type
- Conference Proceeding (11)
- Book (1)
Keywords
- Anthropometric dummy (8)
- Dummy (8)
- Brustkorb (7)
- Simulation (7)
- Thorax (7)
- Bewertung (6)
- Evaluation (assessment) (5)
- Impact test (veh) (5)
- Anfahrversuch (4)
- Schweregrad (Unfall, Verletzung) (4)
Institute
- Abteilung Fahrzeugtechnik (12)
- Sonstige (3)
One main objective of the EU-Project SENIORS is to provide improved methods to assess thoracic injury risk to elderly occupants. In contribution to this task paired simulations with a THOR dummy model and human body model will be used to develop improved thoracic injury risk functions. The simulation results can provide data for injury criteria development in chest loading conditions that are underrepresented in PMHS test data sets that currently proposed risk functions are based on. To support this approach a new simplified generic but representative sled test fixture and CAE model for testing and simulation were developed. The parameter definition and evaluation of this sled test fixture and model is presented in this paper. The justification and definition of requirements for this test set-up was based on experience from earlier studies. Simple test fixtures like the gold standard sled fixture are easy to build and also to model in CAE, but provide too severe belt-only loading. On the other hand a vehicle buck including production components like airbag and seat is more representative, but difficult to model and to be replicated at a different laboratory. Furthermore some components might not be available for physical tests at later stage. The basis of the SENIORS generic sled test set-up is the gold standard fixture with a cable seat back and foot rest. No knee restraint was used. The seat pan design was modified including a seat ramp. The three-point belt system had a generic adjustable load limiter. A pre-inflated driver airbag assembly was developed for the test fixture. Results of THOR test and simulations in different configurations will be presented. The configurations include different deceleration pulses. Further parameter variations are related to the restraint system including belt geometry and load limiter levels. Additionally different settings of the generic airbag were evaluated. The test set-up was evaluated and optimized in tests with the THOR-M dummy in different test configurations. Belt restraint parameters like D-ring position and load limiter setting were modified to provide moderate chest loading to the occupant. This resulted in dummy readings more representative of the loading in a contemporary vehicle than most available PMHS sled tests reported in the literature. However, to achieve a loading configuration that exposes the occupant to even less severe loading comparable to modern vehicle restraints it might be necessary to further modify the test set-up. The new generic sled test set-up and a corresponding CAE model were developed and applied in tests and simulations with THOR. Within the SENIORS project with this test set-up also volunteer and PMHS as well as HBM simulations are performed, which will be reported in other publications. The test environment can contribute in future studies to the assessment of existing and new frontal impact dummies as well as dummy improvements and related instrumentation. The test set-up and model could also serve as a new standard test environment for PMHS and volunteer tests as well as HBM simulations.
In the European Project FIMCAR, a proposal for a frontal impact test configuration was developed which included an additional full width deformable barrier (FWDB) test. Motivation for the deformable element was partly to measure structural forces as well as to produce a severe crash pulse different from that in the offset test. The objective of this study was to analyze the safety performance of vehicles in the full width rigid barrier test (FWRB) and in the full width deformable barrier test (FWDB). In total, 12 vehicles were crashed in both configurations. Comparison of these tests to real world accident data was used to identify the crash barrier most representative of real world crashes. For all vehicles, the airbag visible times were later in the FWDB configuration. This was attributed to the attenuation of the initial acceleration peak, observed in FWRB tests, by the addition of the deformable element. These findings were in alignment with airbag triggering times seen in real world crash data. Also, the dummy loadings were slightly worse in FWDB compared to FWRB tests, which is possibly linked to the airbag firing and a more realistic loading of the vehicle crash structures in the FWDB configuration. Evaluations of the lower extremities have shown a general increasing of the tibia index with the crash pulse severity.
Für eine Reihe von EU Regelungen im Bereich Fahrzeugsicherheit erlaubt eine Verordnung bereits seit dem Jahr 2010 virtuelles Testen für die Typzulassungsprüfung. Technische Details bzw. konkrete Prozeduren für spezifische Regelungen sind in dieser Verordnung jedoch nicht enthalten. Das Hauptziel des europäischen Projekts IMVITER (lmplementation of Virtual Testing in Safety Regulations) war es, basierend auf der neuen Verordnung ein virtuelles Testverfahren auszuarbeiten und dabei offene Fragen zu berücksichtigen. Um die im Projekt-Konsortium unter Berücksichtigung der Anliegen aller Interessensgruppen wie Autohersteller, Zulassungsbehörden und technischer Dienste erarbeiteten offenen Punkte zu adressieren, wurde ein generisches Flussdiagramm entwickelt, das den Ablauf einer virtuell basierten Typprüfung darstellt. ln diesem Diagramm ist der virtuelle Typgenehmigungsprozess in drei aufeinander folgende Phasen aufgeteilt, die Verifikations-, Validierungs- und Typgenehmigungsphase. Von entscheidender Bedeutung ist die Phase der Validierung des Simulationsmodells, für die im IMVITER-Projekt eine Methodik vorgeschlagen wurde. Mit der im Projekt vorgeschlagenen Validierungsmethode ist kein Austausch des Simulationsmodells zwischen Fahrzeughersteller und technischem Dienst notwendig, so dass die Vertraulichkeit von Betriebsgeheimnissen nicht gefährdet ist. Zur Validierung des Modells werden jedoch immer Versuche notwendig sein. Dies gilt sowohl für die Überpruefung von passiven als auch aktiven Fahrzeugsicherheitssystemen. Eine zusammenfassende Betrachtung der Erfahrungen aus dem IMVITER-Projekt ergab, dass mit der Einführung von virtuellem Testen keine Erhöhung der Anforderungen an die Fahrzeugsicherheit bzgl. bestehender Regelungen verbunden sein sollte. Jedoch werden auch weiterhin neue zusäztliche Regelungen erforderlich sein, da sich das Unfallgeschehen und die Fahrzeugtechnologie weiterentwickeln und ändern werden. Diese sollten von Beginn an die Möglichkeiten des virtuellen Testens nutzen, insbesondere bei Testverfahren für neue Technologien, z.B. aktiver Fahrzeugsicherheitssysteme. Hier bieten virtuelle Testverfahren nicht nur eine Kosten- oder Zeitersparnis, sondern ermöglichen teilweise erst die sinnvolle Abprüfung von neuen Sicherheitssystemen, die mit aktuellen auf Hardware-Test basierenden Verfahren überhaupt nicht möglich wären.
Since integrated safety systems combine active and passive safety elements in one safety system, it is necessary to define new procedures to evaluate vehicle safety from the overall system point of view. The main goal of the ASSESS project is to develop harmonized and standardized assessment procedures for collision mitigation and avoidance systems. Methods and Data Sources: In ASSESS, procedures are developed for: driver behaviour evaluation, pre-crash system performance evaluation, crash performance evaluation, socio-economic assessment. This paper will concentrate on the activities related to the crash evaluation. The objective is to perform simulations, sled tests and crash tests in order tounderstand the influence of the activation of the pre-crash systems on the occupants" injuries during the crash phase. When a traffic accident is unavoidable, pre-crash systems work on various safety devices in order to improve the vehicle occupants" protection. Braking assistance and adaptive restraint systems are the main pre-crash systems whose effect on the occupants" protection will be described in this paper. Results: The results will be a description of the effect of the activation of the pre-crash systems on the crash phase. Additionally, a set of recommendations for future methodology developments will be delivered. Furthermore, a first approach to the study of the effect of the pre-crash systems activation on the occupants" protection when the impact is unavoidable will be presented. This effect will be quantified using the biomechanical values obtained from the simulation and testing activities and their related injury risks. Simulation and testing activities will consider the following scenarios: - No activation of any pre-crash system, - Activation of one or a combination of several pre-crash systems. In this way, differences in the results obtained from different scenarios will show the effect of each pre-crash system separately during the crash phase. Discussion and Limitations: The set of activities developed in this research project is limited by the fact that with the given resources only a limited number of vehicle models could be investigated. In addition, there are also limitations related to the injury risk curves and the passive safety tools currently on the market. Conclusion and Relevance to session submitted: The paper will present a complete analysis of the effect of pre-crash systems during the crash phase when the impact is unavoidable. Details, limitations and first application experience based on a few examples will be discussed. Currently, there is not any regulation, assessment program, or other similar official procedure able to assess pre-crash systems during the crash phase. This project comprises phases of traffic accidents which have been historically analysed separately, and aims to evaluate them taking into account their interrelationship. ASSESS is one of the first European projects which deals in depth with the concept of integrated safety, defining methodologies to analyse vehicle safety from a global point of view.
Thoracic injury is one of the predominant types of severe injuries in frontal accidents. The assessment of the injury risk to the thorax in the current frontal impact test procedures is based on the uni-axial chest deflection measured in the dummy Hybrid III. Several studies have shown that criteria based on the linear chest potentiometer are not sensitive enough to distinguish between different restraint systems, and cannot indicate asymmetric chest loading, which has been shown to correlate to increased injury risk. Furthermore, the measurement is sensitive to belt position on the dummy chest. The objective of this study was to evaluate the optical multipoint chest deflection measurement system "RibEye" in frontal impact sled tests. Therefore the sensitivity of the RibEyesystem to different restraint system parameters was investigated. Furthermore, the issue of signal drop out at the 6 th rib was investigated in this study.A series of sled tests were conducted with the RibEye system in the Hybrid III 50%. The sled environment consisted of a rigid seat and a standard production three-point seat belt system. Rib deflections were recorded with the RibEye system and additionally with the standard chest potentiometer. The tests were carried out at crash pulses of two different velocities (30 km/h and 64 km/h). The tests were conducted with different belt routing to investigate the sensitivity of chest deflection measurements to belt position on the dummy chest. Furthermore, different restraint system parameters were investigated (force limiter level, with or without pretensioning) to evaluate if the RibEye measurements provide additional information to distinguish between restraint system configurations . The results showed that with the RibEye system it was possible to identify the effect of belt routing in more detail. The chest deflections measured with the standard chest potentiometer as well as the maximum deflection measured by RibEye allowed the distinction to be made between different force limiter levels. The RibEye system was also able to clearly show the asymmetric deflection of the rib cage due to belt loading. In some configurations, differences of more than 15 mm were observed between the left and side areas of the chest. Furthermore, the abdomen insert was identified as source of the problem of signal drop out at the 6th rib. Possible solutions are discussed. In conclusion, the RibEye system provided valuable additional information regarding the assessment of restraint systems. It has the potential to enable the evaluation of thoracic injury risk due to asymmetric loading. Further investigations with the RibEye should be extended to tests in a vehicle environment, which include a vehicle seat and other restraint system components such as an airbag.
Thoracic injuries are one of the main causes of fatally and severely injured casualties in car crashes. Advances in restraint system technology and airbags may be needed to address this problem; however, the crash test dummies available today for studying these injuries have limitations that prevent them from being able to demonstrate the benefits of such innovations. THORAX-FP7 was a collaborative medium scale project under the European Seventh Framework. It focused on the mitigation and prevention of thoracic injuries through an improved understanding of the thoracic injury mechanisms and the implementation of this understanding in an updated design for the thorax-shoulder complex of the THOR dummy. The updated dummy should enable the design and evaluation of advanced restraint systems for a wide variety (gender, age and size) of car occupants. The hardware development involved five steps: 1) Identification of the dominant thoracic injury types from field data, 2) Specification of biomechanical requirements, 3) Identification of injury parameters and necessary instrumentation, 4) Dummy hardware development and 5) Evaluation of the demonstrator dummy. The activities resulted in the definition of new biofidelity and instrumentation requirements for an updated thorax-shoulder complex. Prototype versions were realised and implemented in three THOR dummies for biomechanical evaluation testing. This paper documents the hardware developments and biomechanical evaluation testing carried out.
In the EC FP6 Integrated Project Advanced Protection Systems, APROSYS, the first WorldSID small female prototype was developed and evaluated by BASt, FTSS, INRETS, TRL and UPM-INSIA during 2006 and 2007. Results were presented at the ESV 2007 conference (Been et al., 2007). With the prototype dummy scoring a biofidelity rating higher than 6.7 out of 10 according to ISO/TR9790, the results were very promising. Also opportunities for further development were identified by the evaluation group. A revised prototype, Revision1, was subsequently developed in the 2007-2008 period to address comments from the evaluation group. The Revision1 dummy includes changes in the half arms and the suit (anthropometry and arm biomechanics), the thorax and abdomen ribs and sternum (rib durability), the abdomen/lumbar area and the lower legs (mass distribution). Also a two-dimensional chest deflection measurement system was developed to measure deflection in both lateral and anterior-posterior direction to improve oblique thorax loading sensitivity. Two Revision1 prototype dummies have now been evaluated by FTSS, TRL, UPM-INSIA and BASt. The updated prototype dummies were subjected to an extensive matrix of biomechanical tests, such as full body pendulum tests and lateral sled impact tests as specified by Wayne State University, Heidelberg University and Medical College of Wisconsin. The results indicated a significant improvement of dummy biofidelity. The overall dummy biofidelity in the ISO rating system has significantly improved from 6.7 to 7.6 on a scale between 0-10. The small female WorldSID has now obtained the same biofidelity rating as the WorldSID mid size male dummy. Also repeatability improved with respect to the prototype. In conclusion the recommended updates were all executed and all successfully contributed in achieving improved performance of the dummy.
To assess occupant safety in a crash test, criteria associating the measurements made with a crash test dummy to injury risk are necessary. To enable better protection of elderly car occupants the objective of this study was to develop improved thoracic injury criteria for the THOR average male dummy. The development of these criteria is usually based on matched dummy and Post Mortem Human Surrogate (PMHS) tests by relating the obtained PMHS injuries to dummy measurements. This approach is limited, since only a few tests in relevant loading conditions are available and any new test series requires high efforts to be performed due to their complexity and costs. To overcome these limitations and to extend the dataset for the development of THOR dummy chest injury risk functions a simulation-based approach was applied within the EC funded project SENIORS (Safety Enhanced Innovations For older Road Users - www.seniors-project.eu). Within this study frontal impact sled simulations with an FE model representing a THOR average male dummy and matched simulations with a human body model (HBM) representing an elderly car occupant were carried out. The HBM used for this study was the THUMS TUC with modified rib cage, which was developed in SENIORS. The modifications included material and geometry changes aiming to represent an elderly car occupant. The rib fracture risk was predicted with a deterministic approach whereby a rib was considered broken when the strain exceeded an age-dependent threshold. Furthermore, a probabilistic method was applied to predict the probability of sustaining a certain number of fractured ribs by comparing local strain values to the distribution of cortical rib ultimate strain. By relating the output from the HBM simulations to a multi-point dummy injury criterion, injury risk curves were calculated by statistical methods. The wide range of loading conditions resulted in the desired range of injuries and THOR ATD output. The number of fractured ribs predicted by the HBM based on the deterministic prediction method was between 0 and 15. Furthermore, the probabilistic risk for the number of rib fractures equal or greater than two, three or four was calculated for each load case. The THOR rib deflection criterion Rmax was between 18 and 56 mm, while the PC Score was in the range of 2.5 to 7.2. Based on these outputs new risk curves for the predicted deterministic (AIS2+/3+) and probabilistic injury risk were calculated. The new curves show reasonable shapes and significance that provide trust in their application. The new risk curves are compared to risk curves obtained by traditional methods. The results were found similar to previous injury risk functions based on physical tests, which gives a high level of confidence in the chosen approach. The simulation-based approach of matched ATD model vs. HBM simulation was successfully applied. Rmax curves show a slightly better quality than the injury criterion PC Score.
Thorax injury is one of main causes of serious injury in frontal collisions, especially for elderly car occupants. The anthropometric test device (ATD) THOR‐M provides chest deflection measurements at multiple locations, to assess the risk of thorax injury. For this purpose e, risk functions are needed that relate the potential criteria based on multipoint chest deflection measurement to in jury risk. Different thorax injury criteria and risk functions for THOR have been proposed [2‐3]. The criteria and functions are based on the traditional approach to developing injury risk functions using matched ATD and PMHS tests by relating the injury (number of fractures) to injury criteria. Regarding these studies, some limitations have been identified, in particular concerning the loading conditions of the data used (mainly 3‐point‐belt loading, high loading severity, out‐of‐date ATD versions. To extend the data set and overcome these limitations, a new approach for improved thorax injury criteria was applied within the EC‐funded project SENIORS. The new approach is based on matched frontal impact sled computer simulations with a model representing the latest THOR‐M ATD version, and matching simulations with a human body model (HBM) representing an elderly car occupant.
Insbesondere auf Landstraßen, das heißt außerorts ohne Bundesautobahnen, hat sich in den letzten Jahren ein deutlicher Rückgang bei den Unfällen mit Pkw gezeigt. Von 2001 bis 2005 ist die Zahl der bei Landstraßenunfällen Getöteten von 4.481 auf cirka 3.230 zurückgegangen. Als eine wesentliche Ursache für diese positive Entwicklung wird die stetige Verbesserung der aktiven und passiven Sicherheit von Fahrzeugen angesehen. In der vorliegenden Arbeit wurde untersucht, inwieweit sich in der amtlichen Unfallstatistik Belege für diese Vermutung finden lassen. Ob die Wirkung straßeninfrastrukturseitiger Maßnahmen auf Landstraßenunfälle mit dem gewählten Ansatz analog nachweisbar ist, wurde ebenfalls betrachtet. Der Einfluss fahrzeugseitiger Maßnahmen auf das Unfallgeschehen wurde zum einen für drei Systeme der aktiven Fahrzeugsicherheit Fahrdynamikregelungen (ESP), Bremsassistenten (BAS) und Gasentladungsscheinwerfer (XENON) Ń ermittelt. Zum anderen wurden Verbesserungen der passiven Fahrzeugsicherheit, wie Airbags oder auch die Einführung von Vorschriften zum Beispiel für Frontal- und Seitenaufprall, als Gesamtpaket betrachtet. Darüber hinaus wurden Einflussmöglichkeiten verbesserter Straßeninfrastruktur beziehungsweise -ausstattung erörtert. Für die ausgewählten Sicherheitseinrichtungen wurden geeignete Teilmengen aus dem Unfallgeschehen ausgewählt, bei denen sich der Einfluss der Fahrzeugtechnik erwarten lässt. Diese wurden dann mit Unfallsituationen verglichen, in denen die Maßnahmen keine Wirkung zeigen sollten. Im Einzelnen konnten folgende Ergebnisse aus den Auswertungen des Unfallgeschehens abgeleitet werden: Die Zahl der Unfälle in ESP-relevanten Situationen ist bei neuen Fahrzeugen, in denen ESP zu einem hohen Anteil verbaut ist, deutlich und überproportional zurückgegangen. Hier ist zwischen den Jahren 2000 und 2005 ein Rückgang der Landstraßenunfälle mit Personenschaden und der schwerwiegenden Unfälle mit Sachschaden in Höhe von 28 % eingetreten. Der positive Effekt des ESP zeigt sich auch an der Zahl der schweren Personenschäden (Getötete und Schwerverletzte). Insgesamt ergibt sich für den Rückgang der schweren Personenschäden in ESP-relevanten Situationen auf Landstraßen unter Berücksichtigung der Unfälle älterer Pkw sowie der Unfälle in Vergleichssituationen ein Wert von 13 %. Das Unfallgeschehen in BAS-relevanten Situationen hat sich sowohl für Neufahrzeuge als auch für ältere Fahrzeuge gleichermaßen, aber überproportional verbessert (-31 % Unfälle für BAS-relevante Situationen gegenüber -20 % für nicht BAS-relevante). Ein Sicherheitsvorteil allein durch BAS lässt sich mit den vorliegenden Zahlen somit nicht eindeutig nachweisen. Dass auch ältere Fahrzeuge in der BAS-Situation einen starken Rückgang aufweisen, deutet darauf hin, dass es neben dem BAS weitere Faktoren gibt, die diese Situation positiv beeinflussen, die aber nicht identifiziert sind. Hier könnte ABS, das in der gleichen Situation wirkt wie BAS und auch noch bei älteren Fahrzeugen wachsende Ausstattungsquoten zeigt, eine Rolle spielen. Rückgänge in den Unfallzahlen fallen für Neufahrzeuge in den XENON-relevanten Situationen etwas stärker aus als bei älteren Pkw (-34 % gegenüber -28 %). Daraus lassen sich, vermutlich bedingt durch die geringen Änderungen der Ausstattungsquote, jedoch in dieser Untersuchung keine Sicherheitsvorteile durch Gasentladungslicht ableiten, da der Rückgang gleichermaßen auch in der Vergleichssituation auftritt. Gleichzeitig deutet die Unfallentwicklung in Abhängigkeit vom Fahrzeugalter jedoch darauf hin, dass auch in der XENON-Situation andere Maßnahmen, die zum Beispiel der passiven Fahrzeugsicherheit zuzuordnen sind, wirksam sein müssen. Die Rückgänge der Unfallschwere (Anzahl der Getöteten und Schwerverletzten je 100 Pkw-Fahrer bei Unfällen mit Personenschaden) in Unfällen mit entgegenkommenden Fahrzeugen (relevante Situation für die passive Sicherheit) sind bei Fahrern von Neufahrzeugen am größten (-42 % gegenüber -14 % bei älteren Fahrzeugen). Dies zeigt eindeutig die Wirkung verbesserter Systeme der passiven Fahrzeugsicherheit wie Airbags, Gurtstraffer und -kraftbegrenzer sowie optimierte Fahrzeugstruktur beziehungsweise Fahrgastzelle. Deutliche Rückgänge in der Unfallschwere bei den sonstigen Unfällen von Neufahrzeugen zeigen, dass sich die ständig weiterentwickelte passive Sicherheit auch in anderen Unfallkonstellationen, wie zum Beispiel seitlichen Kollisionen, bewährt. Im Straßeninfrastrukturbereich besteht das Problem, dass die wesentlichen Informationen für den hier gewählten Ansatz zur Ermittlung des Einflusses von Maßnahmen auf das Unfallgeschehen nicht verfügbar sind. Dafür müssten zum einen Daten über die Menge der umgesetzten Maßnahmen im Zeitverlauf vorliegen; zum anderen müsste es eine Vergleichsgruppe geben (Unfälle, die durch die Maßnahme nicht beeinflusst wurden). Maßnahmen und Nicht-Maßnahmen müssten dabei räumlich und/oder zeitlich abgrenzbar sein. Es zeigt sich, dass diese Daten für die meisten Maßnahmen im Infrastrukturbereich nicht vorliegen, sodass mit Hilfe der amtlichen Unfallstatistik keine Untersuchungen zur Wirksamkeit durchgeführt werden können. Hier sind demnach andere Untersuchungsansätze anzuwenden.
Upcoming test procedures and regulations consider the use of Q-dummies. Especially Q6 and Q10 will be introduced to assess the safety of child occupants in vehicle rear seats. Therefore detailed knowledge of these dummies is important to improve safety. As recent studies have shown, chest deflection measurements of both dummies are influenced by parameters like belt geometry. This could lead to a non optimized design of child restraint systems (CRS) and belt systems. The objective of this study is to obtain a more detailed understanding of the sensitivity of chest measurements to restraint parameters and to investigate the possibilities of chest acceleration as an alternative for the assessment of chest injury risks. A study of frontal impact sled tests was performed with Q6 and Q10 in a generic rear seat environment on a bench. Belt parameters like modified belt attachment locations were varied. For the Q6 dummy, different positioning settings of the CRS (booster with backrest) and of the dummy itself were investigated. The Q10 dummy was seated on a booster cushion. Here the position of the upper belt anchorage point was varied. To simulate the influence of vehicle rotation in the ODB crash configuration, the bench was pre-rotated on the sled in additional tests with the Q10. This configuration was tested with and without pretensioner and load limiter. Chest deflection in Q6 showed a high sensitivity to changes in positioning of the CRS and the dummy itself. A more slouched position of the CRS or dummy resulted in a reduction of measured chest deflection, whereas chest acceleration increased for a more slouched position of the CRS. Chest deflection in Q10 is sensitive to belt geometry as already shown in other studies. In a more outboard position of the shoulder belt anchorage the measured chest deflection is higher. Chest acceleration shows the opposite tendency, which is highest for the rearmost location of the upper belt anchorage. On a pre-rotated bench the highest chest deflection within this test series was observed without load limiter/pretensioner and an outboard belt position. By optimizing the belt location and the use of pretensioner/load limier the chest deflection was significantly reduced. For the Q6 a criterion based on chest acceleration as well as deflection measured at two locations might be the most reliable approach, which requires further research with an additional upper deflection sensor. In the Q10 the measured chest deflection does not always correctly reflect the severity of chest loading. The deflection is depending on initial belt position and restraint parameters as well as test conditions, which result in different directions of belt migration. A3ms chest acceleration might be a better indicator for severity of chest loading independent of different conditions like belt geometries. However, in some cases the benefit of an optimized restraint system could only be shown by deflection. These findings suggest that further research is needed to identify a chest injury assessment method, which could be based on deflection as well as acceleration or other parameters related to belt to occupant interaction.
For a number of EU regulatory acts Virtual Testing (VT) is already allowed for type approval (see Commission Regulation No. 371/2010 of 16 April 2010 amending the Framework Directive 2007/46/EC). However, only a very general procedure on how to apply VT for type approval is provided. Technical details for specific regulatory acts are not given yet. The main objective of the European project IMVITER (IMplementation of VIrtual TEsting in Safety Regulations) was to promote the implementation of VT in safety regulations. When proposing VT procedures the new regulation was taken into account, in particular, addressing open issues. Special attention was paid to pedestrian protection as pilot cases. A key aspect for VT implementation is to demonstrate that the employed simulation models are reliable. This paper describes how the Verification and Validation (V&V) method defined by the American Society of Mechanical Engineers was adapted for pedestrian protection VT based assessment. or the certification of headform impactors an extensive study was performed at two laboratories to assess the variability in calibration tests and equivalent results from a set of simulation models. Based on these results a methodology is defined for certification of headform impactor simulation models. A similar study was also performed with one vehicle in the type approval test setup. Its bonnet was highly instrumented and subjected to 45 impacts in five different positions at two laboratories in order to obtain an estimation of the variability in the physical tests. An equivalent study was performed using stochastic simulation with a metamodel fed with observed variability in impact conditions of physical headforms. An estimation of the test method uncertainty was obtained and used in the definition of a validation corridor for simulation models. Validation metric and criteria were defined in cooperation with the ISO TC22 SC10 and SC12 WG4 "Virtual Testing". A complete validation procedure including different test setups, physical magnitudes and evaluation criteria is provided. A detailed procedural flowchart is developed for VT implementation in EC Regulation No 78/2009 based on a so called "Hybrid VT" approach, which combines real hardware based head impact tests and simulations. This detailed flowchart is shown and explained within this paper. Another important point within the virtual testing based procedures is the documentation of relevant information resulting from the verification and validation process of the numerical models used. For this purpose report templates were developed within the project. The proposed procedure fixes minimum V&V requirements for numerical models to be confidently used within the type-approval process. It is not intended to be a thorough guide on how to build such reliable models. Different modeling methodologies are therefore possible, according to particular OEM know-how. These requirements respond to a balance amongst the type-approval stakeholders interests. A cost-benefit analysis, which was also performed within the IMVITER project, supports this approach, showing the conditions in which VT implementation is beneficial. Based on the experience gained in the project and the background of the experts involved an outlook is given as a roadmap of VT implementation, identifying the most important milestones to be reached along the way to a future vehicle type approval procedure supported by VT. The results presented in this paper show an important step addressing open questions and fostering the future acceptance of virtual testing in pedestrian protection type approval procedures.