Refine
Year of publication
Document Type
- Conference Proceeding (409)
- Article (37)
- Book (17)
- Part of a Book (9)
- Working Paper (8)
Language
- English (480) (remove)
Keywords
- Conference (279)
- Konferenz (277)
- Germany (178)
- Deutschland (174)
- Unfall (163)
- Accident (162)
- Injury (116)
- Verletzung (116)
- Safety (102)
- Sicherheit (97)
Institute
- Sonstige (337)
- Abteilung Fahrzeugtechnik (126)
- Abteilung Verhalten und Sicherheit im Verkehr (23)
- Abteilung Brücken- und Ingenieurbau (22)
- Abteilung Straßenverkehrstechnik (22)
- Abteilung Straßenbautechnik (17)
- Präsident (9)
- Stabstelle Presse und Öffentlichkeitsarbeit (6)
- Stabstelle Forschungscontrolling, Qualitätsmanagement (1)
Annual Report 2021
(2022)
In the Annual Report 2021, the BASt presents a selection of research activities of the year 2021.
In almost 40 contributions, projects from 5 specialist areas are presented. The spectrum of topics ranges from digital transformations in bridges and structural technology to sustainable, climate-resistant highway construction, efficient, ecological and digital traffic engineering, automated, environmentally conscious automotive engineering and the safety of all who participate in traffic.
Highlights as well as facts and figures in short and concise form complete the report.
Annual Report 2020
(2021)
The focus of the Annual Report 2020 is on selected research results from all fields of activity of the BASt.
Among the topics are for example the re-evaluation of the alcohol ban for novice drivers, the effectiveness of emergency braking systems for trucks or risk factors in motorbike traffic. ‘Talking’ workplaces will be discussed as well as the communication of automated vehicles with non-automated road users and airbag safety systems for cyclists.
The traffic barometer shows how traffic developed during the Corona pandemic. Also presented are technical developments to avoid road closures, the RITUN guide for resilient road tunnels, concrete roadway 4.0, how occupational safety demands and promotes innovation, and cross-national research cooperation in road construction.
Results on safe rural roads through suitable protective devices, on the use of digital technologies in engineering structures, on sustainable innovative replacement of concrete bridges as well as BASt activities in the BMVI Network of Experts are also presented.
Highlights as well as facts and figures complete the report.
Annual Report 2019
(2020)
In its Annual Report 2019, the BASt has compiled a selection of its research. For example, the climate impact analysis, among other things, describes an essential research focus for the federal main road network. The new information and evaluation platform "BaustellenCheck" is presented, and reports on digitization in road equipment and maintenance as well as on various activities on the innovative test site duraBASt.
The results of current simulator and test track studies are also part of the annual report, as are the results of level 3 automation studies in real road traffic with an appropriately equipped test vehicle. Approaches to solutions for the infrastructure requirements of automated driving on motorways and federal trunk roads are presented, as well as the current status of the development of regulations in the field of vehicle technology.
The BASt scientists investigated the significance of virtual reality in road safety work. Whether influencers can be used effectively in road safety communication was also considered, as well as other proposed measures to reduce the risk of accidents, especially among young novice drivers.
Highlights as well as facts and figures in short and concise form complete the report.
Eine Expertengruppe der OECD über "Großversuche für den Straßenoberbau" (Pilotland: Schweiz) hat gemeinsame Versuche zur Messung von Dehnungen in bituminös gebundenen Schichten organisiert. Die Versuche fanden im April 1984 auf der Versuchspiste von Nardo (Italien) statt, mit der Teilnahme von 10 Ländern. Alle Teilnehmer haben auf einem speziell gebauten Versuchsoberbau mit Belastung durch Lastwagen ihre eigenen messtechnischen Verfahren und ihre Geräte gebraucht. Die verwendeten Messfühler werden beschrieben und verschiedene Versuchsparameter analysiert (Eigenschaften des Oberbaus, der Belastungsfahrzeuge, Temperaturen, usw.). Beim Vergleich der Ergebnisse wurden auch analytische Methoden angewendet, um aufgrund von Feld- und Laborergebnissen die wahren Dehnungswerte zu schätzen. In Anbetracht der Streuung verschiedener Parameter können die verwendeten Methoden als zuverlässig beurteilt werden. Auf dieser Grundlage kann sich eine weitere internationale Zusammenarbeit entwickeln.
Thorax injury is one of main causes of serious injury in frontal collisions, especially for elderly car occupants. The anthropometric test device (ATD) THOR‐M provides chest deflection measurements at multiple locations, to assess the risk of thorax injury. For this purpose e, risk functions are needed that relate the potential criteria based on multipoint chest deflection measurement to in jury risk. Different thorax injury criteria and risk functions for THOR have been proposed [2‐3]. The criteria and functions are based on the traditional approach to developing injury risk functions using matched ATD and PMHS tests by relating the injury (number of fractures) to injury criteria. Regarding these studies, some limitations have been identified, in particular concerning the loading conditions of the data used (mainly 3‐point‐belt loading, high loading severity, out‐of‐date ATD versions. To extend the data set and overcome these limitations, a new approach for improved thorax injury criteria was applied within the EC‐funded project SENIORS. The new approach is based on matched frontal impact sled computer simulations with a model representing the latest THOR‐M ATD version, and matching simulations with a human body model (HBM) representing an elderly car occupant.
Technische Sicherheitsverbesserungen führen im Mensch-Maschine-System Straßenverkehr nicht zwangsläufig zu Sicherheitsgewinnen. Von den Einstellungen und Verhaltensgewohnheiten der Fahrzeugführer hängt es ab, ob vergrößerte sicherheitspotenziale adäquat genutzt oder durch Verhaltensanpassungen wieder verspielt werden. Anhand ausgewählter theoretischer Modelle und empirischer Forschungsergebnisse (OECD-Studie Behavioural adaptations to changes in the road transport system) wird dies diskutiert, und es werden Kriterien zur Vermeidung unerwünschter Adaptationen abgeleitet, die bereits bei der Planung und Realisierung technischer Verbesserungen Berücksichtigung finden sollten.
The German highway network hast o face new challenges in the near future, e.g. increasing traffic density and loads, climate change effects and new quality requirements regarding sustainability. It is necessary to come up with foresighted concepts in the present to be prepared for these challenges. Therefore it is important to adapt and enhance innovative attempts, which take changing impacts into account. One goal of these efforts is the development of adaptive systems for the provision of information and a holistic evaluation in real time. The paper describes the recent research and developments on a system for information and holistic evaluation in real time, taking into account sensor networks, evaluation procedures and their implementation in existing maintenance and inspection strategies.
Structured road markings are becoming popular as edge line on high speed roads, ensuring night time visibility (retroreflection) during rain. These markings are often also "audio-tactile": vehicles (un)intentionally driving over it may produce much more tyre/road sound, which may be observed in the vehicle but also in the vicinity. The sound increase inside the car can be considered as a positive side effect, as it alarms the driver and may be very helpful for the prevention of "doze off" traffic accidents. The sound increase perceived outside the car however, may have a positive aspect as it can warn people on the emergency lane about the approaching vehicle, but it may as well annoy people living around. A method for the assessment of the acoustic properties of audio-tactile markings has been developed. It is mainly based on the "Close Proximity" (CPX) method, an ISO method intended for the acoustic assessment of pavements. The results of measurement campaigns with CPX trailers in Belgium and Germany according to a specially designed procedure are presented. The feasibility of the method is discussed. The research has been carried out in the frame of the standardization activities of the CEN working group CEN/TC226/WG2 "Horizontal signalization".
In Europe, in situ measurements of sound reflection and airborne sound insulation of noise barriers are usually done according to CEN/TS 1793-5. This method has been improved substantially during the EU funded QUIESST collaborative project. Within the same framework, an inter-laboratory test has been carried out to assess the repeatability and reproducibility of the newly developed method when applied to real-life samples, including the effect of outdoor weather variability and sample ageing. This article presents the statistical analysis of the inter-laboratory test results, and the values of the repeatability and the reproducibility, both in one-third octave bands and for the single-number ratings. The estimated reproducibility values can be used as the extended measure of uncertainty at the 95% credibility level in compliance with the ISO GUM. The repeatability and reproducibility values associated with airborne sound insulation are also compared with the corresponding values for laboratory measurements in building acoustics and an acceptable agreement is found.
A methodology to derive precision requirements for automatic emergency braking (AEB) test procedures
(2015)
AEB Systems are becoming important to increase traffic safety. Test procedures in testing for consumer information, manufacturer self-certification and technical regulations are used to ensure a certain minimum performance of these systems. Consequently, test robustness, test efficiency and finally test cost become increasingly important. The key driver for testing effort and test costs is the required repeatable accuracy in a test design - the higher the accuracy, the higher effort and test costs. On the other hand, the performance of active safety systems depends on time discretization in the environment perception and other sub-systems: for instance, typical sensors supply information with a cycle time of 50 - 150 ms. Time discretization results in an inherent spread of system performance, even if the test conditions are perfectly equal. The proposed paper shows a methodology to derive requirements for a test setup (e.g. test repeats, use of driving robots, ...) as function of AEB system generation and rating method (e.g. Euro NCAP points awarded, pass/fail, ...). While the methodology itself is applicable to AEB pedestrian and AEB Car-Car scenarios, due to the lack of sufficient test data for AEB Car-Car, the focus of this paper is on AEB pedestrian scenarios. A simulation model for the performance of AEB Pedestrian systems allows for the systematic variation of the discretization time as well as test condition accuracy. This model is calibrated with test results of 4 production vehicles for AEB Pedestrian, all fully tested by BASt according to current Euro NCAP test protocols. Selected parameters to observe the accuracy of the test setup in case of pedestrian AEB is the calculated impact position of pedestrian on the vehicle front (as if no braking would have occurred), and the test vehicle speed accuracy. These variable was shown in real tests to be repeatable in the range of ± 5 cm and ± 0,25 km/h, respectively, with a fully robotized state of the art test setup. The sensitivity of AEB performance (measured in achieved speed reduction as well as overall rating result according to current Euro NCAP rating methods) towards discretization and the sensitivity of performance towards test accuracy then is compared to identify economic yet robust test concepts. These comparisons show that the available repeatability accuracy of current test setups is more than sufficient for today's AEB system capabilities. Time discretization problems dominate the performance spread especially in test scenarios with a limited pedestrian dummy reveal time (e.g. child behind obstruction, running adult scenarios with low car speeds). This would allow to increase test tolerances to decrease test cost. A methodology which allows to derive the required tolerances in active safety tests might be valuable especially for NCAPs of emerging countries that do not have the necessary equipment (e.g. driving robots, positioning units) available for the full-scale and high tolerance EuroNCAP active safety procedures yet still want to rate active safety systems, thus improving the global safety.
Accidents between right turning trucks and straight riding cyclists often show massive consequences. Accident severity is much higher than in other accidents. The situation is critical especially due to the fact that, in spite of the six mirrors that are mandatory for ensuring a minimum field of sight for the truck drivers, cyclists in some situations cannot be seen or are not seen by the driver. Either the cyclist is overlooked or is in a blind spot area that results from the turning manoeuvre of the truck and its articulation if it is a truck trailer or truck semitrailer combination. At present driver assistance systems are discussed that can support the driver in the turning situation by giving a warning when cyclists are riding parallel to the truck just before or in the turning manoeuvre. Such systems would generally bear a high potential to avoid accidents of right turning trucks and cyclists no matter if they ride on the road or on a parallel bicycle path. However, performance requirements for such turning assist systems or even test procedures do not exist yet. This paper describes the development of a testing method and requirements for turning assist systems for trucks. The starting point of each development of test procedures is an analysis of accident data. A general study of accident figures determines the size of the problem. In-depth accident data is evaluated case by case in order to find out which are representative critical situations. These findings serve to determine characteristic parameters (e.g. boundary conditions, trajectories of truck and cyclist, speeds during the critical situation, impact points). Based on these parameters and technical feasibility by current sensor and actuator technology, representative test scenarios and pass/fail-criteria are defined. The outcome of the study is an overview of the accident situation between right turning trucks and straight driving cyclists in Germany as well as a corresponding test procedure for driver assistance systems that at this first stage will be informing or warning the driver. This test procedure is meant to be the basis for an international discussion on introducing turning assist systems in vehicle regulations.
In the paper it is investigated to what extend one can extrapolate the detailed accident database GIDAS (German In-Depth Accident Study), with survey area Hanover and Dresden region, to accident behavior in other regions and countries within Europe and how such an extrapolation can be implemented and evaluated. Moreover, it is explored what extent of accident data for the target country is necessary for such an extrapolation and what can be done in situations with sparse and low accident information in a target region. It will be shown that a direct transfer of GIDAS injury outcomes to other regions does not lead to satisfactory results. But based on GIDAS and using statistical decision tree methods, an extrapolation methodology will be presented which allows for an adequate prediction of the distribution of injury severity in severe traffic accidents for European countries. The method consists essentially of a separation of accidents into well-described subgroups of accidents within which the accident severity distribution does not vary much over different regions. In contrast the distribution over the various subgroups of accidents typically is rather different between GIDAS and the target. For the separation into the subgroups meaningful accident parameters (like accident type, traffic environment, type of road etc.) have been selected. The developed methodology is applied to GIDAS data for the years 1999-2012 and is evaluated with police accident data for Sweden (2002 to 2012) and the United Kingdom (2004 to 2010). It is obtained that the extrapolation proposal has good to very good predictive power in the category of severe traffic accidents. Moreover, it is shown that iterative proportional fitting enables the developed extrapolation method to lead to a satisfactory extrapolation of accident outcomes even to target regions with sparse accident information. As an important potential application of the developed methodology the a priori extrapolation of effects of (future) safety systems, the operation of which can only be well assessed on the basis of very detailed GIDAS accident data, is presented. Based on the evaluation of the presented extrapolation method it will be shown that GIDAS very well represents severe accidents, i.e. accidents with at least one severely or fatally injured person involved, for other countries in Europe. The developed extrapolation method reaches its limits in cases for which only very little accident information is available for the target region.
Euro NCAP will start to test pedestrian Automatic Emergency Braking Systems (AEB) from 2016 on. Test procedures for these tests had been developed by and discussed between the AsPeCSS project and other initiatives (e.g. the AEB group with Thatcham Research from the UK). This paper gives an overview on the development process from the AsPeCSS side, summarizes the current test and assessment procedures as of March 2015 and shows test and assessment results of five cars that had been tested by BASt for AsPeCSS and the respective manufacturer. The test and assessment methodology seems appropriate to rate the performance of different vehicles. The best test result - still one year ahead of the test implementation - is around 80%, while the worst rating result is around 10%. Other vehicles are between these boundaries.
Autonomous Emergency Braking (AEB) systems for pedestrians have been predicted to offer substantial benefit. On this basis, consumer rating programmes, e.g. Euro NCAP, are developing rating schemes to encourage fitment of these systems. One of the questions that needs to be answered to do this fully, is to determine how the assessment of the speed reduction offered by the AEB is integrated with the current assessment of the passive safety for mitigation of pedestrian injury. Ideally, this should be done on a benefit related basis. The objective of this research was to develop a benefit based methodology for assessment of integrated pedestrian protection systems with pre-crash braking and passive safety components. A methodology has been developed which calculates the cost of pedestrian injury expected, assuming all pedestrians in the target population (i.e. pedestrians impacted by the front of a passenger car) are impacted by the car being assessed, taking into account the impact speed reduction offered by the car’s AEB (if fitted) and the passive safety protection offered by the car’s frontal structure. For rating purposes, this cost can be normalised by comparing it to the cost calculated for selected cars. The methodology uses the speed reductions measured in AEB tests to determine the speed at which each casualty in the target population will be impacted. The injury to each casualty is then calculated using the results from standard Euro NCAP pedestrian impactor tests and injury risk curves. This injury is converted into cost using ‘Harm’ type costs for the body regions tested. These costs are weighted and summed. Weighting factors were determined using accident data from Germany and GB and the results of a benefit analysis performed by the EU FP7 AsPeCSS project. This resulted in German and GB versions of the methodology. The methodology was used to assess cars with good, average and poor Euro NCAP pedestrian ratings, with and without a current AEB system fitted. It was found that the decrease in casualty injury cost achieved by fitting an AEB system was approximately equivalent to that achieved by increasing the passive safety rating from poor to average. Also, it was found that the assessment was influenced strongly by the level of head protection offered in the scuttle and windscreen area because this is where head impact occurs for a large proportion of casualties. The major limitation within the methodology is the assumption used implicitly during weighting. This is that the cost of casualty injuries to body areas, such as the thorax, not assessed by the headform and legform impactors, and other casualty injuries such as those caused by ground impact, are related linearly to the cost of casualty injuries assessed by the impactors. A methodology for assessment of integrated pedestrian protection systems was developed. This methodology is of interest to consumer rating programmes which wish to include assessment of these systems. It also raises the interesting issue if the head impact test area should be weighted to reflect better real-world benefit.
The EVERSAFE project addressed many safety issues for electric vehicles including the crash and post-crash safety. The project reviewed the market shares of full electric and hybrid vehicles, latest road traffic accident data involving severely damaged electric vehicles in Europe, and identified critical scenarios that may be particular for electric vehicles. Also, recent results from international research on the safety of electric vehicles were included in this paper such as results from performed experimental abuse cell and vehicle crash tests (incl. non-standardized tests with the Mitsubishi i-MiEV and the BMW i3), from discussions in the UN IG REESS and the GTR EVS as well as guidelines (handling procedures) for fire brigades from Germany, Sweden and the United States of America. Potential hazards that might arise from damaged electric vehicles after severe traffic accidents are an emerging issue for modern vehicles and were summarized from the perspective of different national approaches and discussed from the practical view of fire fighters. Recent rescue guidelines were reviewed and used as the basis for a newly developed rescue procedure. The paper gives recommendations in particular towards fire fighters, but also to vehicle manufacturers and first-aiders.
Since the beginning of the testing activities related to passive pedestrian safety, the width of the test area being assessed regarding its protection level for the lower extremities of vulnerable road users has been determined by geometrical measurements at the outer contour of the vehicle. During the past years, the trend of a decreased width of the lower extremity test and assessment area realized by special features of the outer vehicle frontend design could be observed. This study discusses different possibilities for counteracting this development and thus finding a robust definition for this area including all structures with high injury risk for the lower extremities of vulnerable road users in the event of a collision with a motor vehicle. While Euro NCAP is addressing the described problem by defining a test area under consideration of the stiff structures underneath the bumper fascia, a detailed study was carried out on behalf of the European Commission, aiming at a robust, worldwide harmonized definition of the bumper test area for legislation, taking into account the specific requirements of different certification procedures of the contracting parties of the UN/ECE agreements from 1958 and 1998. This paper details the work undertaken by BASt, also serving as a contribution to the TF-BTA of the UN/ECE GRSP, towards a harmonized test area in order to better protect the lower extremities of vulnerable road users. The German In-Depth Accident Database GIDAS is studied with respect to the potential benefit of a revised test area. Several practical options are discussed and applied to actual vehicles, investigating the differences and possible effects. Tests are carried out and the results studied in detail. Finally, a proposal for a feasible definition is given and a suggestion is made for solving possible open issues at angled surfaces due to rotation of the impactor. The study shows that, in principle, there is a need for the entire vehicle width being assessed with regard to the protection potential for lower extremities of vulnerable road users. It gives evidence on the necessity for a robust definition of the lower extremity test area including stiff and thus injurious structures at the vehicle frontend, especially underneath the bumper fascia. The legal definition of the lower extremity test area will shortly be almost harmonized with the robust Euro NCAP requirements, as already endorsed by GRSP, taking into account injurious structures and thus contributing to the enhanced protection of vulnerable road users. After finalization of the development of a torso mass for the flexible pedestrian legform impactor (FlexPLI) it is recommended to consider again the additional benefit of assessing the entire vehicle width.
During the past five years, a Euro NCAP technical working group on pedestrian safety has been working on improving test and assessment procedures for enhanced passive pedestrian safety. After harmonizing the tools and procedures as much as possible with legislation, the work was mainly focused on the development of grid procedures for the pedestrian body regions head, upper leg with pelvis and lower leg with knee. Furthermore, the test parameters for the head and the upper leg were revised, a new lower legform impactor was introduced and the injury thresholds were adjusted or, where necessary, the injury criteria were changed. Finally, the assessment limits and colour scheme were refined, widening the range and adding two more colours in order to provide a more detailed description of the pedestrian safety performance. By abstaining from an assessment based on a worst point selection philosophy, the improved test point determination procedures that were introduced during the years 2013 and 2014 give a more homogeneous, high resolution picture of the pedestrian safety performance of the vehicle frontends. By using a uniform grid for each test zone approximately 200 test points, evenly distributed within each area, can now be assessed per vehicle. The introduction of the flexible pedestrian legform impactor in 2014 enables a more realistic injury prediction of the knee and the tibia using a biofidelic test tool. With the new upper legform test that has been launched in 2015 the assessment in that area is now focusing on the injured body region instead of the injury causing vehicle part and thus is aligned with the approach in the remaining body regions head and lower leg. At the same time, a monitoring test with the headform impactor against the bonnet leading edge is closing the possible gap between the test areas to identify injury causing vehicle parts that moved out of focus due to the introduction of the new upper legform test. The paper describes the new test and assessment procedures with their underlying philosophy and gives an outlook in terms of open issues, specifying the needs for further improvement in the future. In parallel to the work of the pedestrian subgroup, a Euro NCAP working group on heavy vehicles introduced a set of protocol changes in 2011 that were related to the assessment of M1 vehicles derived from commercial vehicles, with a gross vehicle weight between 2.5 and 3.5 tons and 8 or 9 seats. The paper also investigates the applicability of the new pedestrian test and assessment procedures to heavy vehicles.
Upcoming test procedures and regulations consider the use of Q-dummies. Especially Q6 and Q10 will be introduced to assess the safety of child occupants in vehicle rear seats. Therefore detailed knowledge of these dummies is important to improve safety. As recent studies have shown, chest deflection measurements of both dummies are influenced by parameters like belt geometry. This could lead to a non optimized design of child restraint systems (CRS) and belt systems. The objective of this study is to obtain a more detailed understanding of the sensitivity of chest measurements to restraint parameters and to investigate the possibilities of chest acceleration as an alternative for the assessment of chest injury risks. A study of frontal impact sled tests was performed with Q6 and Q10 in a generic rear seat environment on a bench. Belt parameters like modified belt attachment locations were varied. For the Q6 dummy, different positioning settings of the CRS (booster with backrest) and of the dummy itself were investigated. The Q10 dummy was seated on a booster cushion. Here the position of the upper belt anchorage point was varied. To simulate the influence of vehicle rotation in the ODB crash configuration, the bench was pre-rotated on the sled in additional tests with the Q10. This configuration was tested with and without pretensioner and load limiter. Chest deflection in Q6 showed a high sensitivity to changes in positioning of the CRS and the dummy itself. A more slouched position of the CRS or dummy resulted in a reduction of measured chest deflection, whereas chest acceleration increased for a more slouched position of the CRS. Chest deflection in Q10 is sensitive to belt geometry as already shown in other studies. In a more outboard position of the shoulder belt anchorage the measured chest deflection is higher. Chest acceleration shows the opposite tendency, which is highest for the rearmost location of the upper belt anchorage. On a pre-rotated bench the highest chest deflection within this test series was observed without load limiter/pretensioner and an outboard belt position. By optimizing the belt location and the use of pretensioner/load limier the chest deflection was significantly reduced. For the Q6 a criterion based on chest acceleration as well as deflection measured at two locations might be the most reliable approach, which requires further research with an additional upper deflection sensor. In the Q10 the measured chest deflection does not always correctly reflect the severity of chest loading. The deflection is depending on initial belt position and restraint parameters as well as test conditions, which result in different directions of belt migration. A3ms chest acceleration might be a better indicator for severity of chest loading independent of different conditions like belt geometries. However, in some cases the benefit of an optimized restraint system could only be shown by deflection. These findings suggest that further research is needed to identify a chest injury assessment method, which could be based on deflection as well as acceleration or other parameters related to belt to occupant interaction.
Frontal impact is still the most relevant impact direction in terms of injury causation amongst car occupants. Especially for car-to-car frontal impacts the mass ratio between the involved vehicles has a significant impact on the injury risk (the heavier the opponent car the higher the injury risk). In order to address this issue frontal Mobile Deformable Barrier test procedures have been developed world-wide (for example the MPDB procedure that was fully described during the FIMCAR Project). The objective of this study was to investigate how vehicles of different weight classes perform in a mobile barrier test procedure compared to a fixed barrier test procedure (the full width rigid and offset deformable barrier test). Beyond that, the influence of vehicle mass and vehicle deformation on injuries was evaluated based on real world accident data. Five vehicle types were selected and tested in a fixed offset test procedure (ODB), a full width rigid barrier test procedure (FWRB) and a mobile offset test procedure (MPDB). For the accident analyses data from the German In-Depth Accident Study (GIDAS) was evaluated with a focus on MAIS 2+ injured belted front row car (UN-R 94 compliant cars) occupants in frontal impact accidents. Test data indicates higher dummy loadings, in particular for the head acceleration and chest acceleration, in the MPDB test for the vehicles with a mass lighter than the trolley (1,500 kg) compared to the FWRB test. The trend of increased vehicle stiffness (especially illustrated by tests with the MPDB and small cars) shows the need of a further improvement of passive restraint systems to reduce the occupant loading and with it the injury risk. The analyzed GIDAS data confirm the higher injury risk for occupants in cars with an accident weight of less than 1,500 kg compared to those with a crash weight above 1,500 kg in car-to-car and car-to-object or car-to-HGV, respectively. Furthermore the injury risk increases with decreasing mass ratio (i.e., the opponent car is heavier) in car-to-car accidents. Independent from the higher injury risk, the risk for passenger compartment intrusion in frontal impact appears not to be independent on the crash weight of the car.
During a lifecycle a tyre undergoes degradations due to mechanical wear and chemical ageing which affect not only durability and safety but also tyre/road noise emission and rolling resistance. This paper presents a study with the purpose to study how much tyre/road noise and rolling resistance change when car tyres are worn down from the original 8 mm tread depth to 2 mm, and when chemical ageing of the tyre rubber is simulated by exposure to heat. Six car tyres of different types were selected for the study which were worn on a wear machine in steps of 2 mm tread depth. Before, between and after these wear sessions tyre/road noise and rolling resistance were measured on two drum facilities with different surface textures, including replicas of ISO surfaces. Additionally, coast-by and CPX measurements were made on outdoor ISO test tracks. The results show that the wear and age effect was low on ISO surfaces but dramatic (noise increased with wear) on the rough-textured surface and high but opposite on an extremely smooth surface.
The German highway network is facing new challenges in the near future. The structures have to deal with increasing traffic loads, climate change effects and new requirements regarding sustainability while they are getting older and budget cuts can be expected. To guarantee a reliable highway network, it will be vital to adapt and enhance innovative approaches. Current bridge management relies on the results of conventional bridge inspections and thus has certain limitations when it comes to insufficient load bearing capacity and other systematic weaknesses. Therefore, new approaches for real time condition assessment of critical road infrastructure elements are to be developed.
Knowledge of material properties is of great importance when developing new types of concrete and construction methods for road building, and for quality control and quality assurance. Physical material characteristics are likewise the basis for dimensioning and assessing the residual substance of concrete pavements. One relevant characteristic when examining thermally induced stress and deformation is the coefficient of thermal expansion (CTE) of concrete. This indicator, for example, significantly influences the longitudinal expansion of the pavement system as well as the degree of curling of slabs and joint movements. Extensive tests were conducted during the technical engineering assessment of the structural substance of concrete pavements in the German motorway network, including tests to determine the CTE of existing types of concrete. Because no standardised procedure currently exists in Germany for using tests to determine the CTE of concrete, the initial task was to develop a suitable test procedure from a road-building perspective, taking consideration of the national prevailing structural conditions. This article presents the results of selected status analyses, in which the CTE was determined for a total of 656 individual samples. The values calculated for the top and bottom drilled core layer are in the range 8.9 – 13.2 x 10-6/K, whereby the average CTE assumes a value of 10.7 x 10-6/K. The deviations of the CTEs from the bottom and top drilled core layer are in principle significantly below the limitation to a maximum of 2.50 x 10-6/K recommended in literature.
Mobility is a central requirement for economic growth, employment and participation of each individual in social life. This basic principle of the BMVI (Federal Ministry of Transport and Digital Infrastructure) requires an intact and functional infrastructure. In a context of increasing investments over the next few years, it will be relevant to develop a network related systematic procedure to be part of the structural maintenance of the federal highway network. In the planning of maintenance measures, the knowledge about the state of structural performance and its long-term development is of central importance. In the following, a method is presented which allows the mechanically and statistically reliable assessment and prognosis of structural performance of concrete pavements. In addition, the application and procedure are applied to a case study.
In Germany, expenditure for the construction of new and maintenance of existing federal highways is currently at a record level of EUR 8 billion per year. In connection with the planned infrastructure policy reforms it is necessary to further develop the planning tools for dimensioning and substance assessment of road structures in order to increase the efficiency of construction measures. The stress caused by traffic is of central importance here. Since unevenness in the road surface has a significant influence on the dynamic part of the wheel load, dynamic effects must be explicitly taken into account. As a result, increasing unevenness can lead to higher dynamic loads and, in the context of a corresponding number of wheel rollovers, to disproportionate damage to the road structure. In general, a shock factor is taken into account during dimensioning, which is to be considered as a function of vehicle suspension, load, speed and evenness. This approach is not sufficient for concrete road structures executed as slabs. In the normal case, only the periodically occurring individual event of a transverse contraction joint, superimposed by irreversible and/or temporary slab deformations, can lead to a significant increase in the dynamic wheel load. In addition, the existing slab deformations are tied to many boundary conditions and can therefore vary greatly in their characteristics. For the further development of methods for dimensioning and residual substance assessment with regard to their accuracy, a three-dimensional slab-specific view of the road surface is therefore appropriate. In this paper, a suitable measuring method for three-dimensional surface laser scanning and an algorithm for the classification of slab deformations are presented.
Topics of the status report are: Road accidents in Germany ; Socio-economic costs due to road traffic accidents in Germany , German Road Safety Programme. Finished projects: Turning Assist Systems for Trucks ; Handbook „Accessibility in long-distance bus transport“ ; EU project PROSPECT ; Intersection assistance (Euro NCAP) ; Personal Light Electric Vehicles (PLEV) ; Automatic Emergency Braking for Heavy Goods Vehicles ; KO-HAF ; AFAS ; SENIORS ; Adoption of UN-GTR9-PH2. Ongoing and planned research: Safety potential and testing of reversing assistants for passengers cars (M1) and LGV´s (N1) ; Study on winter tires ; Automatic Emergency Braking for passenger cars ; Motorcyclist-friendly safety barriers ; Active motorcycle safety ; EU-Project PIONEERS ; Friction prediction ; Bus safety: smoke gas toxicity ; HMI aspects on Camera-Monitor-Systems ; Activities with regard to UN R 22 and helmets for S-Pedelecs ; Seriously injured road accident casualties ; UNECE IWG on Deployable Pedestrian Protection Systems (Active bonnets) ; GIDAS – new requirements to address new vehicle technology ; Human Body Modelling ; Child Safety at the UNECE with regard to R 129 ; Development of requirements on automated driving functions for vehicle regulations ; EU-Project L3-Pilot ; Development of evaluation methods for driver interaction with assistance and automation (national research and Euro NCAP) ; EU-Project OSCCAR ; PEGASUS ; Development of basic scenarios for the description of control-relevant requirements for continuous automated vehicle guidance ; EU project HEADSTART ; C-Roads Germany ; Practical Test for the Quality of Congestion-Tail Information ; Research program road safety.