Refine
Document Type
- Conference Proceeding (4)
- Article (1)
Keywords
- Brustkorb (3)
- Injury (3)
- Thorax (3)
- Verletzung (3)
- Anthropometric dummy (2)
- Biomechanics (2)
- Biomechanik (2)
- Dummy (2)
- Fußgänger (2)
- Pedestrian (2)
Institute
- Abteilung Fahrzeugtechnik (4)
- Sonstige (3)
Thoracic injuries are one of the main causes of fatally and severely injured casualties in car crashes. Advances in restraint system technology and airbags may be needed to address this problem; however, the crash test dummies available today for studying these injuries have limitations that prevent them from being able to demonstrate the benefits of such innovations. THORAX-FP7 was a collaborative medium scale project under the European Seventh Framework. It focused on the mitigation and prevention of thoracic injuries through an improved understanding of the thoracic injury mechanisms and the implementation of this understanding in an updated design for the thorax-shoulder complex of the THOR dummy. The updated dummy should enable the design and evaluation of advanced restraint systems for a wide variety (gender, age and size) of car occupants. The hardware development involved five steps: 1) Identification of the dominant thoracic injury types from field data, 2) Specification of biomechanical requirements, 3) Identification of injury parameters and necessary instrumentation, 4) Dummy hardware development and 5) Evaluation of the demonstrator dummy. The activities resulted in the definition of new biofidelity and instrumentation requirements for an updated thorax-shoulder complex. Prototype versions were realised and implemented in three THOR dummies for biomechanical evaluation testing. This paper documents the hardware developments and biomechanical evaluation testing carried out.
In general the passive safety capability is much greater in newer versus older cars due to the stiff compartment preventing intrusion in severe collisions. However, the stiffer structure which increases the deceleration can lead to a change in injury patterns. In order to analyse possible injury mechanisms for thoracic and lumbar spine injuries, data from the German Inâ€Depth Accident Study (GIDAS) were used in this study. A twoâ€step approach of statistical and caseâ€byâ€case analysis was applied for this investigation. In total 4,289 collisions were selected involving 8,844 vehicles, 5,765 injured persons and 9,468 coded injuries. Thoracic and lumbar spine injuries such as burst, compression or dislocation fractures as well as soft tissue injuries were found to occur in frontal impacts even without intrusion to the passenger compartment. If a MAIS 2+ injury occurred, in 15% of the cases a thoracic and/or lumbar spine injury is included. Considering AIS 2+ thoracic and lumbar spine, most injuries were fractures and occurred in the lumbar spine area. From the case by case analyses it can be concluded that lumbar spine fractures occur in accidents without the engagement of longitudinals, lateral loading to the occupant and/or very severe accidents with MAIS being much higher than the spine AIS.
In the EC FP6 Integrated Project Advanced Protection Systems, APROSYS, the first WorldSID small female prototype was developed and evaluated by BASt, FTSS, INRETS, TRL and UPM-INSIA during 2006 and 2007. Results were presented at the ESV 2007 conference (Been et al., 2007). With the prototype dummy scoring a biofidelity rating higher than 6.7 out of 10 according to ISO/TR9790, the results were very promising. Also opportunities for further development were identified by the evaluation group. A revised prototype, Revision1, was subsequently developed in the 2007-2008 period to address comments from the evaluation group. The Revision1 dummy includes changes in the half arms and the suit (anthropometry and arm biomechanics), the thorax and abdomen ribs and sternum (rib durability), the abdomen/lumbar area and the lower legs (mass distribution). Also a two-dimensional chest deflection measurement system was developed to measure deflection in both lateral and anterior-posterior direction to improve oblique thorax loading sensitivity. Two Revision1 prototype dummies have now been evaluated by FTSS, TRL, UPM-INSIA and BASt. The updated prototype dummies were subjected to an extensive matrix of biomechanical tests, such as full body pendulum tests and lateral sled impact tests as specified by Wayne State University, Heidelberg University and Medical College of Wisconsin. The results indicated a significant improvement of dummy biofidelity. The overall dummy biofidelity in the ISO rating system has significantly improved from 6.7 to 7.6 on a scale between 0-10. The small female WorldSID has now obtained the same biofidelity rating as the WorldSID mid size male dummy. Also repeatability improved with respect to the prototype. In conclusion the recommended updates were all executed and all successfully contributed in achieving improved performance of the dummy.
Analysis of pedestrian leg contacts and distribution of contact points across the vehicle front
(2015)
Determining the risk to pedestrians that are impacted by areas of the front bumper not currently regulated in type-approval testing requires an understanding of the target population and the injury risk posed by the edges of the bumper. National statistics show that approximately 10% of all accident casualties are pedestrians, with 20% to 30% of these pedestrian casualties being killed or seriously injured. However, the contact position across the front of the bumper is not recorded in national statistics and so in-depth accident databases (OTS, UK and GIDAS, Germany) were used to examine injury risk in greater detail. The results showed that some injury types and severities of injuries appear to peak around the bumper edges. Although there are sometimes inconsistencies in the data, generally there is no evidence to suggest that the edges of the bumper are less likely to be contacted or cause injury.
Autonomous Emergency Braking (AEB) systems for pedestrians have been predicted to offer substantial benefit. On this basis, consumer rating programmes, e.g. Euro NCAP, are developing rating schemes to encourage fitment of these systems. One of the questions that needs to be answered to do this fully, is to determine how the assessment of the speed reduction offered by the AEB is integrated with the current assessment of the passive safety for mitigation of pedestrian injury. Ideally, this should be done on a benefit related basis. The objective of this research was to develop a benefit based methodology for assessment of integrated pedestrian protection systems with pre-crash braking and passive safety components. A methodology has been developed which calculates the cost of pedestrian injury expected, assuming all pedestrians in the target population (i.e. pedestrians impacted by the front of a passenger car) are impacted by the car being assessed, taking into account the impact speed reduction offered by the car’s AEB (if fitted) and the passive safety protection offered by the car’s frontal structure. For rating purposes, this cost can be normalised by comparing it to the cost calculated for selected cars. The methodology uses the speed reductions measured in AEB tests to determine the speed at which each casualty in the target population will be impacted. The injury to each casualty is then calculated using the results from standard Euro NCAP pedestrian impactor tests and injury risk curves. This injury is converted into cost using ‘Harm’ type costs for the body regions tested. These costs are weighted and summed. Weighting factors were determined using accident data from Germany and GB and the results of a benefit analysis performed by the EU FP7 AsPeCSS project. This resulted in German and GB versions of the methodology. The methodology was used to assess cars with good, average and poor Euro NCAP pedestrian ratings, with and without a current AEB system fitted. It was found that the decrease in casualty injury cost achieved by fitting an AEB system was approximately equivalent to that achieved by increasing the passive safety rating from poor to average. Also, it was found that the assessment was influenced strongly by the level of head protection offered in the scuttle and windscreen area because this is where head impact occurs for a large proportion of casualties. The major limitation within the methodology is the assumption used implicitly during weighting. This is that the cost of casualty injuries to body areas, such as the thorax, not assessed by the headform and legform impactors, and other casualty injuries such as those caused by ground impact, are related linearly to the cost of casualty injuries assessed by the impactors. A methodology for assessment of integrated pedestrian protection systems was developed. This methodology is of interest to consumer rating programmes which wish to include assessment of these systems. It also raises the interesting issue if the head impact test area should be weighted to reflect better real-world benefit.