Refine
Year of publication
Document Type
- Conference Proceeding (12)
- Article (3)
- Book (1)
- Working Paper (1)
Keywords
- Conference (7)
- Fahrzeug (7)
- Konferenz (7)
- Accident (6)
- Deutschland (6)
- Germany (6)
- Unfall (6)
- Vehicle (6)
- Analyse (math) (5)
- Analysis (math) (5)
Institute
Safety of light goods vehicles - findings from the German joint project of BASt, DEKRA, UDV and VDA
(2011)
Light goods vehicles (LGVs) are an important part of the vehicle fleet, providing a vital component in the European transportation system. On the other hand, LGVs are in the focus of public discussion regarding road safety. In order to analyse the accident situation of LGVs in an objective manner, Federal Highway Research Institute (BASt), VDA, DEKRA and German Insurers Accident Research (UDV) launched a joint project. The aim of this project, which will be finished by mid of 2011, is to identify reasonable measures which will further improve the safety of LGVs. For the first time, these partners jointly together conducted a research project and put together their know-how in accident research. Analyses are based on real-life accident data from the GIDAS database, the Accident Database of UDV (UDB), the DEKRA database and national statistics. The findings deliver answers to questions within the arena of future legislative actions and consumer protection activities. The analyses of databases cover areas of primary and secondary safety of LGVs with a special focus on advanced driver assistance systems (ADAS), driver behaviour as well as partner and occupant protection. Key figures from national statistics are used to highlight hotspots of accidents of LGVs in Germany. Finally, the proposed countermeasures are assessed regarding their potential effectiveness. Amongst others, the results show that the accident situation of LGVs is very similar to that of passenger cars. Noteworthy variations could be found in collisions with pedestrians, at reversing and regarding accident causes. Occupant safety of LGVs is on a higher level compared to cars. Results indicate that seatbelt use is on a significantly lower level compared to cars. This leads to higher-than-average injury risk for unbelted LGV occupants. When it comes to partner protection, there are problems with compatibility at LGVs. For car occupants there is a very high injury risk when colliding with a LGV. It indicates that higher passive safety test standards for LGVs would be counterproductive if they further increase stiffness of LGVs. The analysis of LGV-pedestrian accidents shows that pedestrian kinematic differs significantly from car-pedestrian accidents. At this point, existing pedestrian related test standards developed for cars cannot be adopted to LGVs. When it comes to active safety, ESC proved its effectiveness once again. Beyond that, rear view cameras, advanced emergency braking systems and lane departure warning systems show a safety potential, too. In addition to any technical countermeasures previously discussed, the importance of the driver behavior and attitude regarding the accident risk was investigated. In order to develop successful actions it is important to understand the main target population. In the case of LGV especially the crafts business and smaller companies are the major contributors the safety issue.
Proposal for a test procedure of assistance systems regarding preventive pedestrian protection
(2011)
This paper is showing a proposal for a test procedure regarding preventive pedestrian protection based on accident analysis. Over the past years pedestrian protection has become an increasing importance also during the development phase of new vehicles. After a phase of focusing on secondary safety, there are current activities to detect a possible collision by assistance systems. Such systems have the task to inform the driver and/or automatically activate the brakes. How practical is such a system? In which kind of traffic situations will it work? How is it possible to check the effectiveness of such a system? To test the effectiveness, currently there are no generally approved identifiable procedures. It is reasonable that such a test should be based on real accidents. The test procedure should be designed to test all systems, independent of the system- working principle. The vFSS group (advanced Forward-looking Safety Systems) was founded to develop a proposal for a technology independent test procedure, which reflects the real accident situation. This contribution is showing the results of vFSS. The developed test procedure focuses on accidents between passenger cars and pedestrians. The results are based on analysis results of in-depth databases of GIDAS, German insurers and DEKRA and added by analysis of national and international statistics. The in-depth analysis includes many pre-crash situations with several influencing factors. The factors are e. g. speed of the car, speed of the pedestrian, moving direction and a possible obscuration of the pedestrian by an object. The results comprise also the different situations of adults and children. Furthermore, they include details regarding influence of the lighting conditions (daylight or night) especially with respect to the accident consequences. In fact, more accidents happen at daylight, but fatal accidents are more often at night. A clustering of parameter combinations was found which represents typical accident scenarios. There are six typical accident scenarios which were merged in four test scenarios. The test scenarios are varying the starting position of the pedestrian, the pedestrian size (adult or child) and the speed of the pedestrian, whereas the speed of the car will not be varied. To ensure the independency from used sensing technologies it is necessary to use a suitable dummy. For example, if sensors are based on infrared, the dummy should emit the temperature of a human being. The test procedure will identify the collision speed as the key parameter for assessing the effectiveness of the tested system. The collision speed is defined as the reduction between initial test speed of the car and impact speed. The assessment of the speed reduction value regarding the safety benefit, however, will be part of a separate procedure.
Die amtliche Straßenverkehrsunfallstatistik kann nur in begrenztem Umfang Informationen zu Unfallentstehung, Unfallablauf sowie zu den zugrunde liegenden Verletzungsmechanismen bereitstellen. Verbleibende Informationslücken lassen sich durch spezielle Erhebungsteams schließen, die Verkehrsunfälle nach wissenschaftlichen Aspekten dokumentieren. Hierzu unterhalten das Bundesministerium für Verkehr, Bau- und Wohnungswesen und die Bundesanstalt für Straßenwesen seit 30 Jahren ein Forschungsprojekt zur Unfalldatenerhebung an der Medizinischen Hochschule Hannover. Seit 1999 erfolgt eine Kooperation mit der Forschungsvereinigung Automobiltechnik (FAT), die ein weiteres Erhebungsteam an der Technischen Universität Dresden unterhält. Die Unfalldaten gehen in die gemeinsame GIDAS-Datenbank ein, aus der sich umfassende Informationen zu den breit gefächerten Forschungsfeldern "Passive und aktive Fahrzeugsicherheit", "Verkehrs- und Rettungsmedizin" und "Straßenbezogene Sicherheitsfragen" gewinnen lassen. In der Zukunft werden Unfallvermeidungsstrategien und Unfallursachenprophylaxe im Vordergrund einer prospektiven Unfallforschung stehen. Die Daten werden auch in Zukunft für die weitere Verbesserung der Verkehrssicherheit einen bedeutenden Beitrag leisten.
Das Projekt IMPROVER (Impact Assessment of Road Safety Measures for Vehicles and Road Equipment / Wirkungsanalyse und Bewertung von verschiedenen Verkehrssicherheitsmaßnahmen) wurde im Auftrag der Europäischen Kommission (Generaldirektion Energie und Verkehr) bearbeitet, um die folgenden Straßenverkehrssicherheitsaspekte zu untersuchen: den Einfluss der wachsenden Zahl von Sport Utility Vehicles (SUV) und Multi Purpose Vehicles (MPV) auf Verkehrssicherheit, Kraftstoffverbrauch und Emissionen; die Bewertung von Maßnahmen zur Verbesserung der Verkehrssicherheit von leichten Nutzfahrzeugen; die Auswirkungen des Tempomaten auf Verkehrssicherheit, Kraftstoffverbrauch und Emissionen; die Harmonisierung von Verkehrszeichen und Markierungen auf dem Transeuropäischen Straßennetz (TERN) unter Verkehrssicherheitsgesichtspunkten. Das Projekt wurde von der Bundesanstalt für Straßenwesen (BASt) zusammen mit 14 Partnerinstituten von November 2004 bis Mai 2006 bearbeitet. Entsprechend den Aufgaben wurde das Projekt in vier voneinander unabhängige Subprojekte eingeteilt. Der vorliegende Artikel gibt eine Übersicht über die in den jeweiligen Unterprojekten geleisteten Arbeiten, deren Ergebnisse und die daraus abgeleiteten Empfehlungen.
Die UNECE Regelung R58 regelt die Beschaffenheit und die Installation von Heckunterfahrschutzsystemen an schweren Güterkraftfahrzeugen, deren Ziel die Verbesserung der Kompabilität zwischen Pkw-Frontstrukturen und Lkw-Hecks ist. Dennoch verunglücken laut amtlicher Unfallstatistik allein in Deutschland rund 30 Pkw-Insassen in Heckauffahrunfällen auf Lkw tödlich, da diese Vorrichtungen hinsichtlich Einbauhöhe und Steifigkeit den Anforderungen des realen Unfallgeschehens nicht genügen. Das Ziel dieser Studie ist eine quantitative Abschätzung der möglichen Reduzierung der Verletzungsschwere mit Hilfe eines statistischen Modells, die durch eine Anpassung der geltenden Bestimmungen und die damit verbundenen technischen Veränderungen des bereits vorgeschriebenen Heckunterfahrschutzes zu erreichen wäre. In einer Nutzen-Kosten-Analyse wird die Wirtschaftlichkeit dieser Modifizierungen mit einem idealen Notbremsassistenten verglichen. Die Untersuchung orientiert sich dabei an den aktuell in der UN-ECE WP29/GRSG in Genf diskutierten Vorschlägen zur Anpassung der ECE-R58. Das verwendete ordinale Probit-Modell stellt einen Zusammenhang zwischen der Verletzungsschwere im auffahrenden PKW und erklärenden Größen her, in diesem Fall der kinetischen Energie des unterfahrenden Pkws und der strukturellen lnteraktion zwischen Lkw-Heck und Pkw-Front. Diese Maßnahmen könnten demnach 53 - 78% der Getöteten sowie 27 - 49% der Schwerverletzten bei diesen Unfallkonstellationen reduzieren, was pro Jahr 20 Getöteten und 95 Schwerverletzten entsprechen würde. Somit würde eine Modifikation einer bestehenden passiven Schutzmaßnahme an jährlich 100.000 neuzugelassenen Lkw und Anhängern bereits 20 Getötete adressieren. Im Vergleich dazu müssten jährlich 3 Millionen Pkw mit zusätzlicher Sensorik und Aktuatorik für einen idealen Notbremsassistenten ausgestattet werden, um im Idealfall alle Heckauffahrunfälle von Pkw auf andere Pkw oder Lkw und damit 53 Getötete zu vermeiden. Daher fällt auch das Nutzen-Kosten-Verhältnis deutlich zugunsten des verbesserten Heckunterfahrschutzes aus.
In Germany the number of casualties in passenger car to pedestrian crashes has been reduced by a considerable amount of 40% as regards fatalities and 25% with regard to seriously injured pedestrians since the year 2001. Similar trends can be seen in other European countries. The reasons for that positive development are still under investigation. As infrastructural or behavioral changes do in general take a longer time to be effective in real world, explanations related to improved active and passive safety of passenger vehicles can be more relevant in providing answers for this trend. The effect of passive pedestrian protection " specified by the Euro NCAP pedestrian test result " is of particular interest and has already been analyzed by several authors. However, the number of vehicles with some valid Euro NCAP pedestrian score (post 2002 rating) was quite limited in most of those studies. To overcome this problem of small datasets German National Accident Records have been taken to investigate a similar objective but now based on a much bigger dataset. The paper uses German National Accident Records from the years 2009 to 2011. In total 65.140 records of pedestrian to passenger car crashes have been available. Considering crash parameters like accident location (rural / urban areas) etc., 27.143 of those crashes have been classified to be relevant for the analysis of passive pedestrian safety. In those 27.143 records 7.576 Euro NCAP rated vehicles (post 2002 rating) have been identified. In addition it was possible to identify vehicles which comply with pedestrian protection legislation (2003/102/EG) where phase 1 came into force in October 2005. A significant correlation between Euro NCAP pedestrian score and injury outcome in real-life car to pedestrian crashes was found. Comparing a vehicle scoring 5 points and a vehicle scoring 22 points, pedestrians" conditional probability of getting fatally injured is reduced by 35% (from 0.58% to 0.37%) for the later one. At the same time the probability of serious injuries can be reduced by 16% (from 27.4% to 22.9%). No significant injury reducing effect, associated with the introduction of pedestrian protection legislation (phase 1) was detected. Considerable effects have also been identified comparing diesel and gasoline cars. Higher engine displacements are associated with a lower injury risk for pedestrians. The most relevant parameter has been "time of accident", whereas pedestrians face a more than 2 times higher probability to be fatally injured during night and darkness as compared to daytime conditions.
Cost benefit analysis
(2014)
Although the number of road accident casualties in Europe is falling the problem still remains substantial. In 2011 there were still over 30,000 road accident fatalities [EC 2012]. Approximately half of these were car occupants and about 60 percent of these occurred in frontal impacts. The next stage to improve a car- safety performance in frontal impacts is to improve its compatibility for car-to-car impacts and for collisions against objects and HGVs. Compatibility consists of improving both a car- self and partner protection in a manner such that there is good interaction with the collision partner and the impact energy is absorbed in the car- frontal structures in a controlled way which results in a reduction of injuries. Over the last ten years much research has been performed which has found that there are four main factors related to a car- compatibility [Edwards 2003, Edwards 2007]. These are structural interaction potential, frontal force matching, compartment strength and the compartment deceleration pulse and related restraint system performance. The objective of the FIMCAR FP7 EC-project was to develop an assessment approach suitable for regulatory application to control a car- frontal impact and compatibility crash performance and perform an associated cost benefit analysis for its implementation.
In line with the new definition introduced by the European Commission (EC), the number of seriously injured road casualties in Germany for 2014 is assessed in this study. The number of MAIS3+ casualties is estimated by two different methodological approaches. The first approach is based on data from the German Inâ€Depth Accident Study (GIDAS), which is closely related to the German Road Traffic Accident Statistics. The second approach is based on data from the German TraumaRegister DGU-® (TRâ€DGU), which includes many more hospitals but not all MAIS3+ injuries.
It is commonly agreed that active safety will have a significant impact on reducing accident figures for pedestrians and probably also bicyclists. However, chances and limitations for active safety systems have only been derived based on accident data and the current state of the art, based on proprietary simulation models. The objective of this article is to investigate these chances and limitations by developing an open simulation model. This article introduces a simulation model, incorporating accident kinematics, driving dynamics, driver reaction times, pedestrian dynamics, performance parameters of different autonomous emergency braking (AEB) generations, as well as legal and logical limitations. The level of detail for available pedestrian accident data is limited. Relevant variables, especially timing of the pedestrian appearance and the pedestrian's moving speed, are estimated using assumptions. The model in this article uses the fact that a pedestrian and a vehicle in an accident must have been in the same spot at the same time and defines the impact position as a relevant accident parameter, which is usually available from accident data. The calculations done within the model identify the possible timing available for braking by an AEB system as well as the possible speed reduction for different accident scenarios as well as for different system configurations. The simulation model identifies the lateral impact position of the pedestrian as a significant parameter for system performance, and the system layout is designed to brake when the accident becomes unavoidable by the vehicle driver. Scenarios with a pedestrian running from behind an obstruction are the most demanding scenarios and will very likely never be avoidable for all vehicle speeds due to physical limits. Scenarios with an unobstructed person walking will very likely be treatable for a wide speed range for next generation AEB systems.
The European Enhanced Vehicle-safety Committee wants to promote the use of more biofidelic child dummies and biomechanical based tolerance limits in regulatory and consumer testing. This study has investigated the feasibility and potential impact of Q-dummies and new injury criteria for child restraint system assessment in frontal impact. European accident statistics have been reviewed for all ECE-R44 CRS groups. For frontal impact, injury measures are recommended for the head, neck, chest and abdomen. Priority of body segment protection depends on the ECE-R44 group. The Q-dummy family is able to reflect these injuries, because of its biofidelity performance and measurement capabilities for these body segments. Currently, the Q0, Q1, Q1.5, Q3 and Q6 are available representing children of 0, 1, 1.5, 3 and 6 years old. These Q-dummies cover almost all dummy weight groups as defined in ECE-R44. Q10, representing a 10 year-old child, is under development. New child dummy injury criteria are under discussion in EEVC WG12. Therefore, the ECE-R44 criteria are assessed by comparing the existing P-dummies and new Q-dummies in ECE-R44 frontal impact sled tests. In total 300 tests covering 30 CRSs of almost all existing child seat categories are performed by 11 European organizations. From this benchmark study, it is concluded that the performance of the Q-dummy family is good with respect to repeatability of the measurement signals and the durability of the dummies. Applying ECE-R44 criteria, the first impression is that results for P- and Q-dummy are similar. For child seat evaluation the potential merits of the Q-dummy family lie in the extra measurement possibilities of these dummies and in the more biofidelic response.
Although the number of road accident casualties in Europe (EU27) is falling the problem still remains substantial. In 2011 there were still over 30,000 road accident fatalities. Approximately half of these were car occupants and about 60 percent of these occurred in frontal impacts. The next stage to improve a car's safety performance in frontal impacts is to improve its compatibility. The objective of the FIMCAR FP7 EU-project was to develop an assessment approach suitable for regulatory application to control a car's frontal impact and compatibility crash performance and perform an associated cost benefit analysis for its implementation. This paper reports the cost benefit analyses performed to estimate the effect of the following potential changes to the frontal impact regulation: • Option 1 " No change and allow current measures to propagate throughout the vehicle fleet. • Option 2 " Add a full width test to the current offset Deformable Barrier (ODB) test. • Option 3 " Add a full width test and replace the current ODB test with a Progressive Deformable Barrier (PDB) test. For the analyses national data were used from Great Britain (STATS 19) and from Germany (German Federal Statistical Office). In addition in-depth real word crash data were used from CCIS (Great Britain) and GIDAS (Germany). To estimate the benefit a generalised linear model, an injury reduction model and a matched pairs modelling approach were applied. The benefits were estimated to be: for Option 1 "No change" about 2.0%; for Option 2 "FW test" ranging from 5 to 12% and for Option 3 "FW and PDB tests" 9 to 14% of car occupant killed and seriously injured casualties.
In spite of today's highly sophisticated crash test procedures like the different NCAP programs running world-wide, bad real world crash performance of cars is still an issue. There are crash situations which are not sufficiently represented by actual test configurations. This is especially true for car to car, as well as for car to object impacts. The paper describes reasons for this bad performance. The reasons are in principal bad structural interaction between the car and its impact partners (geometric incompatibility), unadjusted front end stiffness (stiffness incompatibility) and collapse of passenger compartments. To show the efficiency of improving cars' structural behaviour in accidents with different impact partners an accident data analysis has been taken out by members of European Project VC-COMPAT. Accident data analysis has shown that in Germany between 15,000 and 20,000 of the now severely injured car occupants might get less injured and between 600 and 900 car occupant fatalities might be saved. Similar results arise for the UK.
In the paper it is investigated to what extend one can extrapolate the detailed accident database GIDAS (German In-Depth Accident Study), with survey area Hanover and Dresden region, to accident behavior in other regions and countries within Europe and how such an extrapolation can be implemented and evaluated. Moreover, it is explored what extent of accident data for the target country is necessary for such an extrapolation and what can be done in situations with sparse and low accident information in a target region. It will be shown that a direct transfer of GIDAS injury outcomes to other regions does not lead to satisfactory results. But based on GIDAS and using statistical decision tree methods, an extrapolation methodology will be presented which allows for an adequate prediction of the distribution of injury severity in severe traffic accidents for European countries. The method consists essentially of a separation of accidents into well-described subgroups of accidents within which the accident severity distribution does not vary much over different regions. In contrast the distribution over the various subgroups of accidents typically is rather different between GIDAS and the target. For the separation into the subgroups meaningful accident parameters (like accident type, traffic environment, type of road etc.) have been selected. The developed methodology is applied to GIDAS data for the years 1999-2012 and is evaluated with police accident data for Sweden (2002 to 2012) and the United Kingdom (2004 to 2010). It is obtained that the extrapolation proposal has good to very good predictive power in the category of severe traffic accidents. Moreover, it is shown that iterative proportional fitting enables the developed extrapolation method to lead to a satisfactory extrapolation of accident outcomes even to target regions with sparse accident information. As an important potential application of the developed methodology the a priori extrapolation of effects of (future) safety systems, the operation of which can only be well assessed on the basis of very detailed GIDAS accident data, is presented. Based on the evaluation of the presented extrapolation method it will be shown that GIDAS very well represents severe accidents, i.e. accidents with at least one severely or fatally injured person involved, for other countries in Europe. The developed extrapolation method reaches its limits in cases for which only very little accident information is available for the target region.
Die Klasse der Leichtkraftfahrzeuge (LKfz) unterliegt in Deutschland bislang keiner Zulassungspflicht und damit auch keiner regelmäßigen technischen Überwachung. Es handelt sich hierbei um Fahrzeuge mit einer Leermasse unter 350 kg und einer zulässigen Höchstgeschwindigkeit von 45 km/h. Das äußere Erscheinungsbild der LKfz ähnelt dem eines normalen Kleinwagens. Die Fahrzeuge erhalten ein Versicherungskennzeichen, als Fahrerlaubnis wird ein Führerschein der Klasse B benötigt. Im Rahmen dieser Forschungsarbeit wurde untersucht, ob von der Einführung einer obligatorischen technischen Überwachung für LKfz ein Beitrag zur Verkehrssicherheit zu erwarten ist und wie eine solche Überprüfung aussehen sollte. Hierzu wurden stichprobenhaft drei gebrauchte LKfz unterschiedlicher Hersteller, ein neues LKfz sowie ein vergleichbarer kompakter Pkw beschafft. Die Untersuchung erfolgte in drei Schritten: - Die LKfz wurden zunächst einer Hauptuntersuchung nach Paragraf 29 Straßenverkehrszulassungsordnung (StVZO) zugeführt und anschließend einer darüber hinausgehenden Prüfung unterzogen. Dabei zeigten sich teilweise erhebliche, sicherheitsrelevante Mängel, die ohne eine Überprüfung unerkannt geblieben wären. - Um Aussagen über die aktive Sicherheit der LKfz zu erhalten, wurden Versuche zur Fahrdynamik durchgeführt. Prinzipiell zeigten sich im Vergleich untereinander sowie mit dem normalen Kleinwagen keine wesentlichen Unterschiede in den fahrdynamischen Eigenschaften im Geschwindigkeitsbereich bis 45 km/h; es kam zu keinen kritischen Fahrsituationen. Allerdings wurden erst durch die Fahrversuche Defekte an der Bremse und der Lenkung bei je einem der LKfz entdeckt. - Zur Beurteilung der passiven Sicherheit wurden die LKfz, ausgerüstet mit einem Dummy, mit einer Geschwindigkeit von 35 km/h gegen einen starren Block gefahren. Auswirkungen auf die passive Sicherheit der LKfz aufgrund einer fehlenden technischen Überwachung konnten hierbei nicht nachgewiesen werden. Grundsätzlich zeigte sich jedoch, dass bei der passiven Sicherheit der LKfz ein erhebliches Verbesserungspotenzial besteht. Resultierend aus den Ergebnissen dieser Untersuchungen ergibt sich folgende Forderung: Zur Verbesserung der Verkehrssicherheit sollte eine regelmäßige technische Überwachung der LKfz eingeführt werden. Die Überprüfung sollte in Anlehnung an die Hauptuntersuchung von Pkw erfolgen, im Prüfumfang jedoch speziell auf die LKfz abgestimmt werden. Hierzu gehört insbesondere eine kurze Probefahrt, um Mängel an der Bremsanlage beziehungsweise Lenkanlage oder Manipulationen an der Drosselung der Geschwindigkeit feststellen zu können.
The share of high-tensile steel in car bodies has increased over the last years. While occupant safety has generally benefited from this measure, there is a potential risk that, as a result, rescue time may increase considerably. In more than 60% of all car occupant fatalities a technical rescue has been necessary. These are in particular those cases where occupants die immediately at the accident scene. Therefore, in these cases "rescue time" is a very sensitive parameter. In addition to the general analysis of the need of technical rescue and the actual rescue time depending on model years, the injury pattern of occupants requiring technical rescue will be analysed to provide advice for rescue teams. Furthermore, a detailed analysis of rescue measures for the most popular car models depending on the safety cell design is given.
Today, Euro NCAP is a well established rating system for passive car safety. The significance of the ratings must however be evaluated by comparison with national accident data. For this purpose accidents with involvement of two passenger cars have been taken from the German National Road Accident Register (record years 1998 to 2004) to evaluate the results of the NCAP frontal impact test configuration. Injury data from both drivers involved in frontal car to car collisions have been sampled and have been compared, using a "Bradley Terry Model" which is well established in the area of paired comparisons. Confounders " like mass ratio of the cars involved, gender of the driver, etc. " have been accounted for in the statistical model. Applying the Bradley Terry Model to the national accident data the safety ranking from Euro NCAP has been validated (safety level: 1star <2 star <3 star <4 star). Significant safety differences are found between cars of the 1 and 2 star category as compared to cars of the 3 and 4 star category. The impact of the mass ratio was highly significant and most influential. Changing the mass ratio by an amount of 10% will raise the chance for the driver of the heavier car to get better off by about 18%. The impact of driver gender was again highly significant, showing a nearly 2 times lower injury risk for male drivers. With regard to the NCAP rating drivers of a high rated car are more than 2 times more probable (70% chance) to get off less injured in a frontal collision as compared to the driver of a low rated car.
A biofidelic flexible pedestrian legform impactor (FlexPLI) has been developed from the year 2000 onwards and evaluated by a technical evaluation group (Flex-TEG) of UN-ECE GRSP. A recently established UN-ECE GRSP Informal Group on GTR9 Phase 2 is aiming at introducing the FlexPLI within world-wide regulations on pedestrian safety (Phase 2 of GTR No. 9 as well as the new UN regulation 127 on pedestrian safety) as a test tool for the assessment of lower extremity injuries in lateral vehicle-to-pedestrian accidents. Besides, the FlexPLI has already been introduced within JNCAP and is on the Euro NCAP roadmap for 2014. Despite of the biofidelic properties in the knee and tibia sections, several open issues related to the FlexPLI, like the estimation of the cost benefit, the feasibility of vehicle compliance with the threshold values, the robustness of the impactor and of the test results, the comparability between prototype and production level and the finalization of certification corridors still needed to be solved. Furthermore, discussions with stakeholders about a harmonized lower legform to bumper test area are still going on. This paper describes several studies carried out by the Federal Highway Research Institute (BASt) regarding the benefit due to the introduction of the FlexPLI within legislation for type approval, the robustness of test results, the establishment of new assembly certification corridors and a proposal for a harmonized legform to bumper test area. Furthermore, a report on vehicle tests that previously had been carried out with three prototype legforms and were now being repeated using legforms with serial production status, is given. Finally, the paper gives a status report on the ongoing simulation and testing activities with respect to the development and evaluation of an improved test procedure with upper body mass for assessing pedestrian femur injuries.