Refine
Keywords
- Abstandsregeltempomat (1)
- Accident prevention (1)
- Accident rate (1)
- Active safety system (1)
- Adaptive cruise controll (1)
- Aktives Sicherheitssystem (1)
- Analyse (math) (1)
- Analysis (math) (1)
- Auffahrunfall (1)
- Autobahn (1)
Institute
Safety of light goods vehicles - findings from the German joint project of BASt, DEKRA, UDV and VDA
(2011)
Light goods vehicles (LGVs) are an important part of the vehicle fleet, providing a vital component in the European transportation system. On the other hand, LGVs are in the focus of public discussion regarding road safety. In order to analyse the accident situation of LGVs in an objective manner, Federal Highway Research Institute (BASt), VDA, DEKRA and German Insurers Accident Research (UDV) launched a joint project. The aim of this project, which will be finished by mid of 2011, is to identify reasonable measures which will further improve the safety of LGVs. For the first time, these partners jointly together conducted a research project and put together their know-how in accident research. Analyses are based on real-life accident data from the GIDAS database, the Accident Database of UDV (UDB), the DEKRA database and national statistics. The findings deliver answers to questions within the arena of future legislative actions and consumer protection activities. The analyses of databases cover areas of primary and secondary safety of LGVs with a special focus on advanced driver assistance systems (ADAS), driver behaviour as well as partner and occupant protection. Key figures from national statistics are used to highlight hotspots of accidents of LGVs in Germany. Finally, the proposed countermeasures are assessed regarding their potential effectiveness. Amongst others, the results show that the accident situation of LGVs is very similar to that of passenger cars. Noteworthy variations could be found in collisions with pedestrians, at reversing and regarding accident causes. Occupant safety of LGVs is on a higher level compared to cars. Results indicate that seatbelt use is on a significantly lower level compared to cars. This leads to higher-than-average injury risk for unbelted LGV occupants. When it comes to partner protection, there are problems with compatibility at LGVs. For car occupants there is a very high injury risk when colliding with a LGV. It indicates that higher passive safety test standards for LGVs would be counterproductive if they further increase stiffness of LGVs. The analysis of LGV-pedestrian accidents shows that pedestrian kinematic differs significantly from car-pedestrian accidents. At this point, existing pedestrian related test standards developed for cars cannot be adopted to LGVs. When it comes to active safety, ESC proved its effectiveness once again. Beyond that, rear view cameras, advanced emergency braking systems and lane departure warning systems show a safety potential, too. In addition to any technical countermeasures previously discussed, the importance of the driver behavior and attitude regarding the accident risk was investigated. In order to develop successful actions it is important to understand the main target population. In the case of LGV especially the crafts business and smaller companies are the major contributors the safety issue.
Methods for analyzing the efficiency of primary safety measures based on real life accident data
(2009)
Primary safety measures are designed to help to avoid accidents or, if this is not possible, to stabilize respectively reduce the dynamics of the vehicle to such an extent that the secondary safety measures are able to act as good as possible. The efficiency of a primary safety measure is a criterion for the effectiveness, with which a system of primary safety succeeds in avoiding or mitigation the severity of accidents within its range of operation and in interactionwith driver and vehicle. Based on Daimler-´s philosophy of the "Real Life Safety" the reflection of the real world accidents in the systems range of operation is both starting point as well as benchmark for its optimization. This paper deals with the methodology to perform assessments of statistical representative efficiency of primary safety measures. To be able to carry out an investigation concerning the efficiency of a primary safety measure in a transparent and comparable way basic definitions and systematics were introduced. Based on these definitions different systematic methods for estimating efficiency were discussed and related to each other. The paper is completed by presenting an example for estimating the efficiency of actual "single" and "multi" connected primary safety systems.