Refine
Keywords
- Conference (5)
- Deutschland (5)
- Germany (5)
- Konferenz (5)
- Accident (4)
- Unfall (4)
- Schweregrad (Unfall (3)
- Severity (accid (3)
- Verletzung) (3)
- injury) (3)
Institute
Safety of light goods vehicles - findings from the German joint project of BASt, DEKRA, UDV and VDA
(2011)
Light goods vehicles (LGVs) are an important part of the vehicle fleet, providing a vital component in the European transportation system. On the other hand, LGVs are in the focus of public discussion regarding road safety. In order to analyse the accident situation of LGVs in an objective manner, Federal Highway Research Institute (BASt), VDA, DEKRA and German Insurers Accident Research (UDV) launched a joint project. The aim of this project, which will be finished by mid of 2011, is to identify reasonable measures which will further improve the safety of LGVs. For the first time, these partners jointly together conducted a research project and put together their know-how in accident research. Analyses are based on real-life accident data from the GIDAS database, the Accident Database of UDV (UDB), the DEKRA database and national statistics. The findings deliver answers to questions within the arena of future legislative actions and consumer protection activities. The analyses of databases cover areas of primary and secondary safety of LGVs with a special focus on advanced driver assistance systems (ADAS), driver behaviour as well as partner and occupant protection. Key figures from national statistics are used to highlight hotspots of accidents of LGVs in Germany. Finally, the proposed countermeasures are assessed regarding their potential effectiveness. Amongst others, the results show that the accident situation of LGVs is very similar to that of passenger cars. Noteworthy variations could be found in collisions with pedestrians, at reversing and regarding accident causes. Occupant safety of LGVs is on a higher level compared to cars. Results indicate that seatbelt use is on a significantly lower level compared to cars. This leads to higher-than-average injury risk for unbelted LGV occupants. When it comes to partner protection, there are problems with compatibility at LGVs. For car occupants there is a very high injury risk when colliding with a LGV. It indicates that higher passive safety test standards for LGVs would be counterproductive if they further increase stiffness of LGVs. The analysis of LGV-pedestrian accidents shows that pedestrian kinematic differs significantly from car-pedestrian accidents. At this point, existing pedestrian related test standards developed for cars cannot be adopted to LGVs. When it comes to active safety, ESC proved its effectiveness once again. Beyond that, rear view cameras, advanced emergency braking systems and lane departure warning systems show a safety potential, too. In addition to any technical countermeasures previously discussed, the importance of the driver behavior and attitude regarding the accident risk was investigated. In order to develop successful actions it is important to understand the main target population. In the case of LGV especially the crafts business and smaller companies are the major contributors the safety issue.
The declining trend since 1991 in the number of killed people was broken in 2011 when overall 4 009 people died in traffic accidents in Germany. The question arises if there is a stagnating trend of fatalities in Germany in future? By breaking down the accidents with casualties towards a monthly view one can see a decreasing trend of fatalities in the warmer months especially since 2009. When comparing against winter months higher deviations are observed. In December 2011 an increase of 191 traffic deaths were registered (181 in 2010 compared to 372 in 2011). Further analyses of different accident influences were evaluated and their possibility of drastic change from one year to the other was determined. As seen weather- and environmental conditions are one of the major contributing factors and are one of the causes for the increased number of fatalities. To support the underlying assumption a model had been created to calculate the number of traffic deaths on a daily basis approach. As an input, road conditions projected through weather parameters and also different driving behaviors on weekdays or holidays were used. As a result, estimates of daily fatality with up to 75% precision can be achieved out of the 2009, 2010 and 2011 data. Further on it shows that weather and street conditions have a high influence on the overall resulting number of traffic accidents with casualties, and especially to the number of fatalities. Hence it is estimated that approximately 3 300 people were killed in traffic accidents in Germany in 2013 which would be again a reduction of another 13% compared to 2012. Therefore an answer to the question will be that the decreasing trend in traffic fatalities in Germany somehow is not broken when environmental conditions are included in national statistics. Their effects will become more visible in future accident statistics and it is estimated variances of 5% to 8% of the annual number of traffic fatalities in Germany will be seen.
Although road infrastructure is developed extensively Brazil is still one of the countries with the most dangerous roads in the world. In order to stop the increasing trend of traffic fatalities of the last few years and to improve traffic safety on Brazilian roads a pilot study on behalf of SAE Brazil started in March 2016 with the goal to lay the foundations for a long-term research activity. Piloting for an in-depth accident investigation the city of Campinas, roughly 100 km north of São Paulo was chosen. The pilot project was carried out with the local partner, the Empresa Municipal de Desenvolvimento de Campinas (EMDEC). The paper reports on the initial training of evidence based accident data collection on-spot, the implementation of the new digital database, the data collection and the first results. An outlook on the planned long-term accident investigations is given.
The increasing economics in India has an enormous growth of its road traffic. As observed from official Indian accident statistics the number of road fatalities are one of the highest worldwide. In contrast to most industrialized nations they have an rapidly increasing trend. To come along with this trend it becomes more than essential to understand the traffic accident situation. The official Indian accident statistics gives a glimpse of only basic information. Therefore more detailed data is needed. By using In-depth accident data and officially representative statistics the current accident situation can be evaluated in India, if a suitable weighting methodology is considered. Hence in 2009/2010 a pilot study with the collaboration partner JP-Research India pvt. Ldt. was gathered in Tamil Nadu in south of India. In-depth accident investigations were done around the Coimbatore area on four highways. At first, the collected data is evaluated. Due to consequent and continuous further development based on the first approach a methodology similar to NASS/CDS/GES in the US and GIDAS in Germany was developed. Of course all relevant accident related parameters including pictures and severity information were collected. As a matter of fact based on scaled sketches and reconstruction benefit analyses can be done in order to analyze the accident scenery in India. As a first outcome influence from infrastructure, missing education and vehicle safety were identified as key parameters in order to reduce the number of accidents and casualties. To compare the accident situation against international standards an accident classification for left hand traffic was developed based on the German Insurance classification system. Looking into detail additional accident types were identified and added to create an Indian accident type catalogue. The positive results encouraged several OEMs to participate in this investigation and together with BOSCH a consortium was established in 2010/11. Within one year from beginning in May 2011 about 200 highway accidents were collected, reported and reconstructed using the new standard. Hence a first good overview of the accident situation is available for the Coimbatore Tamil Nadu area. The major target for establishing accident investigations is the extension towards other states of India and urban areas to achieve a better overview of the accident scenery. Therefore local and national authorities have to be embedded in order to strengthen the awareness against traffic safety.
The study aimed at estimating the impact of pedelecs (with an assumed higher speed than bicycles) on the traffic accident severity in Germany for different penetration rates. The analysis shows that in many real situations (68%) an electrical support of bicycles has no influence on the sequence of accident events. Taking into account a number of unreported "single bicycle accidents", the adoption of similar traffic behavior and similar age distribution, the authors determined a shift of 400 former slightly to seriously injured cyclists in Germany per year. Overall this would be an increase of approximately 2.3% in case of 10% of pedelec penetration with the pessimistic assumption of 10 km/h speed increase although first natural driving studies predict a much lower average speed increase of pedelecs. The hypothesis verbalized in the initial question whether a higher distribution of pedelecs will result in more severe accidents in Germany is not verified. The study shows that electrical support didn"t result in higher collision speed in general. In many accident situations, the speed of pedelecs has only a minor influence on the accident severity. Further research focusing on a possible change of driver behavior especially in new target groups (elderly people) will be needed.