IRCOBI Conference Proceedings
Refine
Keywords
- Accident (1)
- Air bag (restraint system) (1)
- Airbag (1)
- Alte Leute (1)
- Analyse (math) (1)
- Analysis (math) (1)
- Anfahrversuch (1)
- Anthropometric dummy (1)
- Cyclist (1)
- Dummy (1)
Institute
Europe has benefited from a decreasing number of road traffic fatalities. However, the proportion of older road users increases steadily. In an ageing society, the SENIORS project aims to improve the safe mobility of older road users by determining appropriate requirements towards passive vehicle safety systems. Therefore, the characteristics of road traffic crashes involving the elderly people need to be understood. This paper focuses on car occupants and pedestrians or cyclists in crashes with modern passenger cars. Ten crash databases and four hospital statistics from Europe have been analysed to answer the questions on which body regions are most frequently and severely injured in the elderly, and specific injuries sustained by always comparing older (65 years and above) with midâ€aged road users (25â€64 years). It was found that the body region thorax is of particularly high importance for the older car occupant with injury severities of AIS2 or AIS3+, where as the lower extremities, head and the thorax need to be considered for older pedestrians and cyclists. Further, injury risk functions were provided. The hospital data analysis showed less difference between the age groups. The linkage between crash and hospital data could only be made on a general level as their inclusion criteria were quite different.
In the European Project FIMCAR, a proposal for a frontal impact test configuration was developed which included an additional full width deformable barrier (FWDB) test. Motivation for the deformable element was partly to measure structural forces as well as to produce a severe crash pulse different from that in the offset test. The objective of this study was to analyze the safety performance of vehicles in the full width rigid barrier test (FWRB) and in the full width deformable barrier test (FWDB). In total, 12 vehicles were crashed in both configurations. Comparison of these tests to real world accident data was used to identify the crash barrier most representative of real world crashes. For all vehicles, the airbag visible times were later in the FWDB configuration. This was attributed to the attenuation of the initial acceleration peak, observed in FWRB tests, by the addition of the deformable element. These findings were in alignment with airbag triggering times seen in real world crash data. Also, the dummy loadings were slightly worse in FWDB compared to FWRB tests, which is possibly linked to the airbag firing and a more realistic loading of the vehicle crash structures in the FWDB configuration. Evaluations of the lower extremities have shown a general increasing of the tibia index with the crash pulse severity.