Berichte der Bundesanstalt für Straßen- und Verkehrswesen, Reihe B: Brücken- und Ingenieurbau
Filtern
Schlagworte
- Bridge (4) (entfernen)
Institut
- Abteilung Brücken- und Ingenieurbau (4) (entfernen)
176
Erfahrungssammlung zu Fahrbahnübergängen aus Asphalt in geringen Abmessungen - Belagsdehnfugen
(2022)
Bei Brücken mit Dehnlängen bis ca. 50 m können Fahrbahnübergänge aus Asphalt zur Anwendung kommen, die seit 2003 in den „Zusätzlichen Techni¬schen Vertragsbedingungen und Richtlinien für Ingenieurbauten“ (ZTV-ING Teil 8 Abschnitt 2) [1] geregelt sind, während bei Brücken mit großen Spannweiten Fahrbahnübergänge aus Stahl eingesetzt werden. Neben den geringeren Kosten liegen die Vorteile dieser Bauweise vor allen Dingen in der Schnelligkeit beim Einbau, der Möglichkeit der fahrstreifenweisen Erneuerung sowie in der geringen Geräuschentwicklung und dem Fahrkomfort bei den Überrollungen durch die Kraftfahrzeuge. Bei kleineren freien Dehnlängen bis ca. 12,5 m werden in der Regel Vergussfugen nach den ZTV Fug-StB [2] eingebaut.
In einigen Fällen sind bei Brücken mit bis zu 12,5 m freier Dehnlänge wiederholt schadhafte Vergussfugen aufgefallen und durch Fahrbahnübergänge aus Asphalt ersetzt worden. Das führt dazu, dass in diesen Fällen das zum Einsatz kommende Fahrbahnübergangssystem überdimensioniert ist, da die Einbaubreite für Brücken bis 50 m freier Dehnlänge ausgelegt ist. In diesen Fällen wäre es wegen der geringen Größen der tatsächlich auftretenden Fugenbewegungen sinnvoll, wenn die Möglichkeit bestände, von den festgelegten Abmessungen der Fahrbahnübergänge aus Asphalt abzuweichen. Durch schmalere Einbaubreiten könnten die Einwirkungen der Kfz-Überrollungen auf die Fahrbahnübergänge aus Asphalt verringert und Verdrückungen vermieden werden. Daher wurden in den letzten Jahren als Ersatz für Vergussfugen nach den ZTV Fug-StB [2] bei Brücken mit geringen freien Dehnlängen sowie beim Übergang von Beton- zu Asphaltfahrbahnen in einigen Fällen Fahrbahnübergänge aus Asphalt in geringer Breite (im Folgenden als „Belagsdehnfugen“ bezeichnet) eingebaut. Aber auch bei Neubauten wurde diese Bauweise in eini¬gen Fällen einer herkömmlichen Vergussfuge nach ZTV Fug-StB [2] vorgezogen, um die Wahrschein-lichkeit eines Schadens möglichst gering zu halten. Die Einbaubreiten betrugen bei Brücken bis 12,5 m freie Dehnlänge in der Regel 7 cm bis 15 cm. In einigen Fällen wurden auch Belagsdehnfugen in Breiten von 20 cm bis 45 cm eingebaut.
Belagsdehnfugen wurden unter anderem auch entlang von Brückenkappen sowie vor Fahrbahnübergängen aus Stahl und über Kammerwänden eingebaut. Da die Bauart von den Festlegungen in den ZTV-ING 8-2 [1] abweicht, ist für den Einsatz auf Brücken im Zuge von Bundesfernstraßen eine Zustimmung im Einzelfall erforderlich.
In dem nachfolgenden Bericht werden die Bauart sowie die Besonderheiten beim Einbau detailliert beschrieben. Dazu wurde bei einer Baumaßnahme der Einbau begleitet und dokumentiert. Außerdem wurde an 50 ausgesuchten Bauwerken, bei denen Belagsdehnfugen in den letzten 12 Jahren eingebaut wurden, die Bewährung in der Praxis überprüft. Unter den untersuchten Bauwerken waren 32 Brückenbauwerke und 18 Kreisverkehre sowie ein Busbahnhof. An 20 Bauwerken wurden die Belagsdehnfugen nach 2- bis 10-jähriger Liegezeit inspiziert und bei 30 Bauwerken erfolgte die Erfahrungssammlung auf der Grundlage von Erfahrungsberichten der zuständigen Verwaltungen, für deren Unterstützung wir uns bedanken.
Verformungen in den Rollspuren, wie sie bei herkömmlichen Fahrbahnübergängen aus Asphalt in einigen Fällen ein Problem darstellen, wurden hier nicht vorgefunden. Durch die verminderte Einbaubreite konnten die Einwirkungen der Kfz-Überrollungen auf die Belagsdehnfugen verringert werden.
Bei den festgestellten Schäden handelt es sich überwiegend um Ablösungen zwischen Belagsdehnfuge und Asphaltdeckschicht bzw. Betonfahrbahn oder um oberflächlich abgetragenes Bindemittel in den Rollspuren der Belagsdehnfuge.
Allerdings zeigte sich bei den Brückenbauwerken eine deutlich geringere Anzahl von Schäden als bei den Kreisverkehren. Daher wurde die Abhängigkeit der Schadenshäufigkeit von den Einsatzbereichen und den angrenzenden Schichten gesondert betrachtet An den untersuchten Brückenbauwerken wurden nur an ca. 3 % der Belagsdehnfugen Ablösungen zwischen Belagsdehnfuge und Asphaltdeckschicht und an weiteren ca. 3 % der Belagsdehnfugen abgetragenes Bindemittel in den Rollspuren der Belagsdehnfuge festgestellt.
Daher stellen Belagsdehnfugen, vor allem bei Brückenbauwerken mit geringen freien Dehnlängen, eine vielversprechende Alternative zu herkömmlichen Fahrbahnübergängen aus Asphalt dar.
Anders verhält es sich bei den untersuchten Kreisverkehren. Hier wiesen ca. 27 % der untersuchten Belagsdehnfugen Flankenenthaftungen und ca. 19 % der Belagsdehnfugen oberflächlich abgetragenes Bindemittel in den Rollspuren auf. Da die Flankenenthaftungen zu ca. 80 % den Übergang von der Betonfahrbahntafel zur Belagsdehnfuge betrafen, sind hier Maßnahmen zur Verbesserung des Haftverbundes, vor allem zu den angrenzenden Betonfahrbahnen zu ergreifen und es ist auf einen besonders sorgfältigen Einbau zu achten.
Aufgrund der überwiegend positiven Ergebnisse der Erfahrungssammlung, insbesondere bei den Brückenbauwerken, kann der vom FGSV AK 7.7.4 „Fahrbahnübergänge aus Asphalt“ vorgeschlagenen Aufnahme dieser Bauart als Sonderbauweise in den Entwurf der „Hinweise und Erläuterungen zu den Zusätzlichen Technischen Vertragsbedingun¬gen und Richtlinien für Ingenieurbauten, Teil 8 Bauwerksausstattung, Abschnitt 2 Fahrbahnübergänge aus Asphalt (ZTV-ING 8-2)“ [11] zugestimmt werden. Dabei ist jedoch zu berücksichtigen, dass die untersuchten Belagsdehnfugen lediglich von einer im süddeutschen Raum ansässigen Firma ausgeführt wurden. Es wird vorgeschlagen, die Erfahrungssammlung fortzuschreiben, wenn eine ausreichende Anzahl an Baumaßnahmen auf Grundlage des oben genannten Entwurfs eingebaut wurde.
61
Fußplatten sind Konstruktionsteile aus Stahl, die der Verankerung von Stahlschutzplanken auf Brücken dienen. Zum Schutz vor Korrosion werden sie feuerverzinkt. Seit Anfang 2000 gehen bei der Bundesanstalt für Straßenwesen (BASt) vereinzelt Meldungen über vorzeitige Kantenkorrosion solcher Fußplatten ein. Im Rahmen dieses Projektes wurden Dokumentationen über die Bauwerke erstellt, an denen Kantenkorrosion an Fußplatten der BASt gemeldet wurden. Einige Fußplatten wurden Untersuchungen im Labor unterzogen. Korrosion von Fußplatten breitet sich in der Regel von den Kanten aus, wobei meistens die verkehrzugewandten Kanten betroffen sind. Die Ursachen hierfür sind komplex. Zweifelsohne spielen korrosive Belastung durch Chloride aus den tauenden Streustoffen und Ansammlungen von Straßensedimenten eine wesentliche Rolle. Trotz dieser starken Korrosionsbelastung bleiben Fußplatten an den Bundesautobahnen in der Regel jahrzehntelang rostfrei. In seltenen Fällen tritt eine vorzeitige Korrosion an Fußplatten auf. Als Auslöser dafür werden Unregelmäßigkeiten im Aufbau des Zinküberzuges vermutet. Die Ursache dafür konnte nicht ermittelt werden. Beim Auftreten von Kantenkorrosion an Fußplatten wird empfohlen, die betroffenen Flächen mechanisch von Rost zu befreien und mit einem zinkstaubhaltigen Reparaturbeschichtungsstoff nach DIN EN ISO 1461 zu beschichten. In gravierenden Fällen ist der Austausch der Fußplatten in Betracht zu ziehen.
90
Auch wenn Kosten für die Fugenfüllungen der Randfugen auf Brücken beim Einbau des Belages nur eine untergeordnete Rolle spielen, so haben diese Fugenfüllungen einen großen Anteil an Schäden und den daraus resultierenden Instandsetzungsmaßnahmen. Für die Festlegung der Ausbildung der Fugenfüllungen (z.B. mit oder ohne Unterfüllstoff) und eine Optimierung der verwendeten Materialien ist es wichtig, die tatsächlichen Belastungen, also insbesondere die Fugenbewegungen zu kennen. Um die tatsächlich auftretenden Fugenbewegungen an der Ruhrtalbrücke Mintard im Zuge der BAB A 52 abschätzen zu können, wurden im Rahmen dieses BASt-Projektes kurzfristige, tageszyklische sowie langfristige Fugenbewegungen an den Randfugen gemessen. Dabei waren drei Gruppen von Fugenbewegungen zu unterscheiden: - Fugenbewegungen infolge Tragwerksverformungen durch Verkehrslasten, - tageszyklische Fugenbewegungen basierend auf Temperaturunterschieden zwischen dem Belag und der Unterlage oder zwischen der Kappe und der Unterlage, sowie auf unterschiedlichen Ausdehnungskoeffizienten des Belages und der Unterlage, - langfristige bis jahreszyklische Fugenbewegungen, z.B. aus langfristigen bis jahreszeitlichen Temperaturschwankungen. Für die Fugenbewegungen aus Verkehr ergaben sich Maximalwerte von ca. 16 -µm. Bei der Betrachtung der Ergebnisse ist eine Häufung der Fugenbewegungen aus Verkehr in dem Bereich zwischen 10 -µm und 16 -µm zu erkennen. Die Fugenbewegungen in diesem Bereich können zu einem großen Teil dem Fahrzeugtyp 10 (Sattelfahrzeug mit der Achsfolge 1+1+3) zugeordnet werden. Es ist anzunehmen, dass diese Fugenbewegungen also durch Fahrzeuge mit einem Gewicht im Bereich von 40 t verursacht werden. Der Verlauf der Fugenbewegungen entspricht einer Einflusslinie mit einer Frequenz von ca. 1,1 Hz. Bei den tageszyklischen Fugenbewegungen ergaben sich für maximale tageszyklische Temperaturunterschiede von 11 K maximale Fugenbewegungen von 0,08 mm. Werden diese gemessenen Fugenbewegungen auf die bei maximal möglichen tageszyklischen Temperaturänderungen von 15 K zu erwartenden Werte extrapoliert, so ergeben sich für die Fugenbewegungen der Ruhrtalbruecke Mintard maximale Fugenbewegungen von 0,12 mm. In einem zweiten Schritt wurden die langfristigen bis jahreszeitlichen Fugenbewegungen gemessen. Die gemessenen Fugenbewegungen lagen im Mittel bei 0,7 mm (wobei diese Messwerte aufgrund des Messverfahrens auch die Fugenbewegungen aus Verkehr sowie die tageszyklischen Fugenbewegungen enthalten). In einem Einzelfall wurde eine Fugenbewegung von 1,1 mm gemessen. Bei den im Bereich der Bundesfernstraßen verwendeten Belägen und Abdichtungssystemen nach den ZTV-ING Teil 7 Abschnitt 4 (Abdichtungen im vollen Verbund) kann bei den Randfugen auf Stahlbrücken davon ausgegangen werden, dass die Fugenbewegungen (Summe aus langfristigen, tageszyklischen und verkehrsinduzierten Fugenbewegungen) im Regelfall 1 mm nicht überschreiten. Die tageszyklischen Fugenbewegungen liegen in einer Größenordnung von < 0,2 mm und die verkehrsinduzierten Fugenbewegungen in einer Größenordnung von < 0,02 mm.
52
Brückenseile bestehen aus zahlreichen ineinandergedrehten feuerverzinkten Drähten und sind zusätzlich von mehrschichtigen Beschichtungen vor Korrosion geschützt. Wenngleich derzeit ausschließlich Drähte mit einem Überzug aus reinem Zink zulässig sind, steht mit Galfan " einer Zink-Aluminium- Legierung " ein neuer Überzug zur Verfügung, mit dem sich ein noch besserer Korrosionsschutz erreichen lässt. Unbekannt jedoch war, ob das einzig zugelassene Beschichtungssystem für Brückenseile über eine ausreichende Haftfestigkeit auf Stahlflächen mit Galfan-Überzug verfügt. Im Rahmen des hier beschriebenen Projekts konnte nachgewiesen werden, dass die üblicherweise bei Brückenseilen verwendete Grundbeschichtung auf Stahlflächen mit Galfan-Überzug eine mindestens genauso gute Haftfestigkeit erreicht wie auf Stahlflächen mit herkömmlichem Zink-Überzug. Zu diesem Zweck wurden speziell angefertigte Prüfkörper praxisrelevanten Korrosionsversuchen unterzogen. Die Prüfung der Haftfestigkeit erfolgte in Form von Abreißversuchen. Auf Basis der hier gewonnenen Ergebnisse wurden die auf herkömmliche Art und Weise verzinkten und die mit Galfan verzinkten Probekörper (bei zwei unterschiedlichen Methoden der Oberflächenvorbereitung) gegenübergestellt und miteinander verglichen. Für beide Arten der Oberflächenvorbereitung wurden bei den mit Galfan überzogenen Probekörpern jeweils bessere Ergebnisse erreicht als bei den herkömmlich verzinkten Probekörpern. Folglich kann der Überzug Galfan gegenüber dem Überzug aus reinem Zink im Hinblick auf die Haftfestigkeit der verwendeten Grundbeschichtung als mindestens gleichwertig angesehen werden. Die gewonnenen Resultate sprechen eindeutig für eine Pilotanwendung von Seilen aus Drähten mit Galfan-Überzug in der Praxis.