Refine
Year of publication
Keywords
- Forschungsbericht (19)
- Deutschland (17)
- Germany (17)
- Research report (16)
- Temperatur (14)
- Temperature (14)
- Stahl (11)
- Belastung (10)
- Load (10)
- Steel (10)
Institute
Das Merkblatt für die Fugenfüllungen in Verkehrsflächen aus Beton einschließlich der Lieferbedingungen für bituminöse Fugenvergussmassen (TL-bit Fug 82) aus dem Jahr 1982 wurde überarbeitet. Es entstanden die Zusätzlichen Technischen Vertragsbedingungen und Richtlinien für Fugenfüllungen in Verkehrsflächen (ZTV Fug-StB 01) mit den Technischen Lieferbedingungen (TL Fug-StB 01) und den Technischen Prüfvorschriften (TP Fug-StB 01), die mit dem Allgemeinen Rundschreiben Straßenbau Nr. 29/2001 vom 31. Juli 2001 für den Bereich der Bundesfernstraßen eingeführt wurden. Als Fugenfüllungen für die Fugen zwischen dem Asphaltbelag und dem Schrammbord auf Brücken werden in den ZTV Fug-StB 01 verarbeitbare elastische Fugenmassen vorgeschrieben. Diese elastischen Fugenmassen sind für Änderungen der Fugenspaltbreite bis 35 % ausgelegt. Bei Fugenspaltbreiten ab 15 mm sind zwischen der Fugenfüllung neben der Schutzschicht und der Fugenfüllung neben der Deckschicht als Unterfüllstoff rechteckige Profile oder Trennstreifen vorzusehen. Die Vergusstiefe muss mindestens das 1,5-fache der Fugenspaltbreite betragen. Der bei den Randfugen auf Beton- und Stahlbrücken zwischen dem Fugenverguss in der Schutzschicht und dem Fugenverguss in der Deckschicht eingelegte Unterfüllstoff oder Trennstreifen soll die Drei-Flanken-Haftung verhindern, da durch sie die Belastung der Fugenflanken vergrößert wuerde, was zu einem Ablösen der Fugenflanken führen könnte. Die Verwendung des Unterfüllstoffes ist aber auch mit Nachteilen verbunden. Wird die Fuge an irgendeiner Stelle undicht, so dringt Wasser, im Winter Salzwasser, in die Fuge ein und verteilt sich entlang des Trennstreifens. Der Schrammbord wird über große Längen geschädigt, wobei diese Schädigung lange Zeit nicht erkannt werden kann. In den Arbeitskreisen 7.10.1 "Beläge auf Betonbrücken" und 7.10.2 "Beläge auf Stahlbrücken" der Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV) wurde erwogen, den Unterfüllstoff oder Trennstreifen bei den Fugen vor Schrammborden oder Bordsteinen auf Brücken wegzulassen, um die Schädigung des Bauwerks bei einem örtlichen Versagen der Fugenfüllung zu minimieren. Dies würde jedoch voraussetzen, dass die Fugenbewegungen in diesen Bereichen ausreichend klein sind, damit die erhöhte Beanspruchung der Fugenflanken aufgrund der Drei-Flanken-Haftung keine Auswirkungen hat. Zu diesem Zweck wurden im Rahmen dieses Projektes sowohl kurzfristige als auch langfristige Fugenbewegungen an 2 Beton- und 3 Stahlbrücken gemessen. Die Mindestbreite der Randfugen auf Brücken entlang der Schrammborde beträgt 2 cm. Daraus ergibt sich, dass bei Verwendung der elastischen Fugenmassen nach den ZTV Fug-StB 01 Änderungen der Fugenspaltbreite von mindestens 6,5 mm aufgenommen werden können. Die Messungen ergaben, dass die tatsächlich auftretenden Fugenbewegungen nur ca.10 % der theoretisch möglichen Fugenbewegung betragen. Ein Weglassen des Unterfüllstoffes bzw. des Trennstreifens bei Fugenfüllungen der Randfugen entlang des Schrammbordes sollte daher möglich sein. Es ist geplant, die Randfugen von etwa 10 Brücken ohne Unterfüllstoff auszuführen und die Bewährung dieser Randfugen über einen Zeitraum von 4 Jahren zu beobachten. Bei positivem Ergebnis dieses Bewährungsnachweises könnte dann die obligatorische Verwendung eines Unterfüllstoffes oder eines Trennstreifens bei Randfugen auf Brücken entfallen. Desweiteren kann aus den Messergebnissen ein praxisgerechtes Belastungskollektiv für Prüfungen oder Untersuchungen an Fugenfüllungen abgeleitet werden, welches sowohl die temperaturbedingten tages- oder jahreszyklischen Fugenbewegungen als auch die Fugenbewegungen aus Verkehr simuliert. Zur Vereinfachung des Kollektivs und da die jahreszyklischen Fugenbewegungen kleiner als die tageszyklischen Fugenbewegungen sind, reicht es aus, nur die tageszyklischen Fugenbewegungen zu simulieren. Die Frequenz muss unter Berücksichtigung der Materialeigenschaften festgelegt werden. Die Amplitude der Fugenbewegung sollte 0,45 mm betragen. Die Fugenbewegungen aus Verkehr können praxisgerecht mit einer Frequenz von ca. 1 Hz bei einer Amplitude von 30 -µm für den Lkw-Verkehr oder 0,50 -µm für Schwerlasttransporte simuliert werden. Gegebenenfalls sollte zu den vorgenannten Amplituden noch ein Zuschlag für an den hier untersuchten Brücken nicht erfasste Effekte hinzugerechnet werden.
Verträglichkeit von reaktionsharzgebundenen Dünnbelägen mit Abdichtungssystemen nach den ZTV-BEL-ST
(2000)
Bei der Überarbeitung des "Merkblattes für reaktionsharzgebundene Dünnbeläge auf Stahl" und der Erstellung von "Zusätzlichen Technischen Vertragsbedingungen und Richtlinien für die Herstellung von reaktionsharzgebundenen Dünnbelägen auf Stahl" (ZTV-RHD-ST) wurden für die Überlappungsbereiche der reaktionsharzgebundenen Dünnbeläge (RHD-Beläge) mit den Abdichtungssystemen nach den "Zusätzlichen Technischen Vertragsbedingungen und Richtlinien für die Herstellung von Brückenbelägen auf Stahl" (ZTV-BEL-ST) oder mit den Korrosionsschutzsystemen nach den "Technischen Lieferbedingungen für Anstrich- und ähnliches Beschichtungsmaterial vorwiegend für Stahlbauten" (siehe auch ZTV-KOR 92) Teil 2, Blatt 81 (TL 918 300 Teil 2, Blatt 81) in einer Bearbeitergruppe Musterzeichnungen erarbeitet, die den Planern solcher Maßnahmen und den Verarbeitern vor Ort vorgeben, wie die entsprechenden Überlappungen in Abhängigkeit von den verschiedenen Belagsystemen auszuführen sind. Im Rahmen der Erarbeitung der Musterzeichnungen wurde zunächst nicht geklärt, ob die verschiedenen zur Anwendung kommenden Stoffe untereinander verträglich sind. Da jedoch die Kenntnis der Verträglichkeit die Grundlage für die Planung der Ausführung der Überlappungsbereiche ist, wurde im Rahmen dieses Projektes die grundsätzliche Verträglichkeit der zur Anwendung kommenden Stoffe untersucht. Anhand der durchgeführten Untersuchungen konnte nachgewiesen werden, welche Kombinationen in der Regel verträglich oder unverträglich sind und bei welchen Kombinationen Untersuchungen im Einzelfall notwendig sind. Mit der Untersuchung von 123 verschiedenen Kombinationen wurden die meisten der zur Zeit möglichen Überbeschichtungen abgedeckt. Den mit der Ausschreibung solcher Maßnahmen Beauftragten wird eine Unterlage zur Verfügung gestellt, anhand derer sie schon bei der Ausschreibung solcher Maßnahmen unverträgliche Kombinationen ausschließen können. Für den Fall, dass die Wahl einer sicher verträglichen Kombination nicht schon von vornherein möglich ist (zum Beispiel bei verbleibenden Altbeschichtungen) wurde ein Prüfverfahren entwickelt, das die Prüfung der Verträglichkeit im Einzelfall regelt. Dieses Prüfverfahren wurde durch den Arbeitskreis 7.10.2 "Beläge auf Stahlbrücken" der FGSV als "Verträglichkeitsprüfung" in den Anhang 2 "Überlappungen im Schrammbordbereich" der ZTV-RHD-ST aufgenommen. Des weiteren wurde in den ZTV-RHD-ST auf diesen Bericht verwiesen.
Reaktionsharzgebundene Dünnbeläge (RHD-Beläge) gemäß dem "Merkblatt für reaktionsharzgebundene Dünnbeläge auf Stahl (Februar 1984)" werden als Beläge bis zu einer Dicke von 15 mm auf stählernen Fahrbahnplatten und Dienststeg-, Geh- und Radwegflächen angewendet. Ihre bevorzugten Anwendungsbereiche sind Fahrbahnen auf beweglichen Brücken, Festbrückengeräten und Fußgängerbrücken sowie Nebenbereiche von stationären Brücken. Die Anforderungen, die an die RHD-Beläge gestellt werden, sind bisher im "Merkblatt für reaktionsharzgebundene Dünnbeläge auf Stahl" und der "Technischen Prüfvorschrift für die Durchführung der Grundprüfung mit Anforderungen und Toleranzen" von 1984 geregelt, die zur Zeit durch den Arbeitskreis 7.10.2 "Beläge auf Stahlbrücken" überarbeitet und in "Zusätzliche Technische Vertragsbedingungen und Richtlinien für die Herstellung von reaktionsharzgebundenen Dünnbelägen auf Stahl" (ZTV-RHD-ST) umgewandelt werden. Hierbei wird die im Merkblatt vorgeschriebene einjährige Praxiserprobung durch Auslagerung auf unter Verkehr liegenden Stahlflachstraßen-Tafeln durch eine Dauerschwellbiegeprüfung in Anlehnung an die Dauerschwellbiegeprüfung nach den "Technischen Prüfvorschriften für die Prüfung der Dichtungsschichten und Abdichtungs-Systeme für Brückenbeläge auf Stahl" (TP-BEL-ST) ersetzt, wozu im Rahmen dieses Projektes Untersuchungen durchgeführt wurden. Es konnte eindeutig nachgewiesen werden, dass eine praxisgerechte direkte Lasteinleitung von oben auf den Belag des Probekörpers bei der Dauerschwellbiegeprüfung für RHD-Beläge möglich ist, was in den Entwurf der Dauerschwellbiegeprüfung eingearbeitet wurde. Die festgelegten Prüfbedingungen für die Dauerschwellbiegeprüfung wurden mit allen zur Zeit verwendeten Bindemittelarten überprüft und abgesichert. Die Möglichkeit der Überbeschichtung auch länger liegender Lagen der Deckschicht eines RHD-Belages nach sorgfältiger Vorbereitung der Unterlage konnte nachgewiesen werden. Ebenfalls wurde die Frage geklärt, ob RHD-Beläge auch in größeren Schichtdicken, zum Beispiel wegen des Ausgleiches von Unebenheiten der Fahrbahntafel oder eines Gradientenausgleiches, eingebaut werden können.
Seilverfüllmittel für vollverschlossene Seile aus Stahldraht sollen sowohl bei der Fertigung als auch im Betrieb die gegenseitige Verschieblichkeit durch Schmierung der Drähte unterstützen und einen langzeitigen inneren Korrosionsschutz gewährleisten. Der vorliegende Schlussbericht beschreibt die Durchführung von Untersuchungen an der Rheinbrücke Emscherschnellweg im Zuge der Bundesautobahn (BAB) A 42 und an der Talbrücke Obere Argen im Zuge der BAB A 96. Im Rahmen des Versuchsprogramms wurde an vier Seilen der Rheinbrücke Emscherschnellweg A 42 im Inneren ein künstliches Wachs und bei den beiden äußeren Drahtlagen Leinölbleimennige als Seilverfüllmittel verwendet. An der Talbrücke Obere Argen wurde als Seilverfüllmittel ebenfalls ein künstliches Wachs verwendet, allerdings ein anderes Fabrikat. Die letzte Drahtlage wurde hier ohne Seilverfüllmittel verseilt. An beiden Brückenbauwerken wurden die unterschiedlich starken Seilverfüllmittel-Austritte und die Seiltemperaturen unter Berücksichtigung der Außentemperaturverhältnisse ermittelt. Bei Dauermessungen der Seildehnungen und der Seilschwingungen wurden auch die daraus resultierenden Laständerungen in den Seilen untersucht. Die Tagesdehnwegsummen von Tagen mit ausreichendem Verkehrsaufkommen wurden unter Verwendung der Ergebnisse der Verkehrszählungen an der Zählstelle Duisburg-Beeckerwerth auf Jahresdehnwegsummen, getrennt nach positiven und negativen Seildehnungen, hochgerechnet. Um die Ursache der Seildehnungen aus Seil- und Überbauschwingungen festzustellen, wurden diese Zeiträume mittels Frequenzanalyse genauer untersucht. Die für diesen Zeitraum durchgeführte Frequenzanalyse zeigt, dass die großen Seildehnungen aus Seil- und Überbauschwingungen nicht auf Seilschwingungen, sondern auf Überbauschwingungen zurückzuführen sind. Die Seildehnungen aus Seil- und Überbauschwingungen unter normalen meteorologischen Bedingungen machen nur einen Bruchteil der Größe der Seildehnungen aus den Lkw-Überfahrten aus, erreichen aber in der Summe, durch die höhere Frequenz, die gleiche Größenordnung wie die Seildehnungen aus den Lkw-Überfahrten.
Gemäß den "Zusätzlichen Technischen Vertragsbedingungen und Richtlinien für die Herstellung von Brückenbelägen auf Stahl" (ZTV-BEL-ST 92) müssen Abdichtsysteme einer Grundprüfung unterzogen werden. Den Kernpunkt dieser Grundprüfung stellt die in den "Technischen Prüfvorschriften für die Prüfung der Dichtungsschichten und der Abdichtungssysteme für Brückenbeläge auf Stahl" (TP-BEL-ST) geregelte Dauerschwellbiegeprüfung dar. Diese Dauerschwellbiegeprüfung soll im Zuge der Überarbeitung des Merkblattes für reaktionsharzgebundene Dünnbeläge auf Stahl zu den "Zusätzlichen Technischen Vertragsbedingungen und Richtlinien für die Herstellung von reaktionsharzgebundenen Dünnbelägen auf Stahl" (ZTV-RHD-ST) auch für diese Beläge eingeführt werden. Hierzu war es notwendig, ein praxisnahes und belagunabhängiges Belastungskollektiv für die Dauerschwellbiegeprüfung zu ermitteln. In der Vergangenheit wurde diese Dauerschwellbiegeprüfung mit einer dynamischen Einstufenbelastung durchgeführt, welche die tatsächliche Beanspruchung eines Belages nicht ausreichend darstellt. Im Rahmen der Untersuchungen an der orthotropen Platte der Rheinbrücke Emscher-Schnellweg im Zuge der BAB A 42 wurde ein praxisnahes, aus umfangreichen Messungen der tatsächlichen Verformungen einer orthotropen Fahrbahnplatte unter Verkehr abgeleitetes Mehrstufenkollektiv zur Modifikation der Dauerschwellbiegeprüfung erarbeitet.
Als Ersatz für das "Merkblatt für reaktionsharzgebundene Dünnbeläge auf Stahl" von 1984 wurden im Arbeitskreis 7.10.2 "Brückenbeläge auf Stahl" der Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV) "Zusätzliche Technische Vertragsbedingungen und Richtlinien für die Herstellung von reaktionsharzgebundenen Dünnbelägen auf Stahl" (ZTV-RHD-ST) erarbeitet. Hierbei wurde der bisher den Materialherstellern weitgehend freigestellte Belagsaufbau anhand der bis dahin gemachten Praxiserfahrungen in engeren Grenzen vorgeschrieben (zum Beispiel homogener Belagsaufbau, bestimmte Mineralstoffe). Dieser geforderte Belagsaufbau unterscheidet sich bei einigen Materialherstellern erheblich von dem bisher verwendeten Belagsaufbau, weshalb nach der Einführung der ZTV-RHD-ST von Herstellerseite modifizierte reaktionsharzgebundene Dünnbeläge (RHD-Beläge) zu erwarten sind. Ein besonders sensibles Anwendungsgebiet für diese RHD-Beläge stellen die Fahrbahnplatten des D-Brücken-Gerätes (Behelfsbrücke) dar, da hier die Dicke der orthotropen Fahrbahnplatten je nach Ausführung nur 8,5 mm beträgt. Dies führte in der Vergangenheit des Öfteren zu einem Versagen der verwendeten Beläge schon während der üblichen 0,5- bis 2-jährigen Standzeit der Behelfsbrücken im Rahmen eines Einsatzes, so dass Belagsinstandsetzungen vor Ort mit starken Verkehrsbeeinträchtigungen nötig wurden. Aus diesem Grund wurde die Bundesanstalt für Straßenwesen (BASt) vom Bundesministerium für Verkehr, Bau- und Wohnungswesen (BMVBW) aufgefordert, vergleichende Untersuchungen der zur Zeit gängigen RHD-Beläge an einer im Einsatz befindlichen Behelfsbrücke vorzunehmen. Hierbei sollten auch schon die oben beschriebenen Änderungen der Belagsaufbauten berücksichtigt werden, um erste Erfahrungen mit den geänderten Belägen zu sammeln. Anhand der durchgeführten Untersuchungen konnten die Schwächen und Empfindlichkeiten der einzelnen Belagsysteme aufgezeigt werden. Am Beispiel des untersuchten PUR-Belages konnte deutlich gezeigt werden, dass der zukünftig vorgeschriebene homogene Belagsaufbau eine sinnvolle Festlegung zur Verhinderung von Glattstellen nach dem Herausfahren der Abstreuung darstellt. Die vorgeschriebenen Abstreumaterialien für die befahrenen Flächen (Chromerzschlacke und/oder Korund) wurden durch die Untersuchungen bestätigt. Die unter Baustellenbedingungen bedeutende Möglichkeit der schnellen Aushärtung einzelner Belagsysteme wurde am Beispiel eines PMMA-Belages und eines EP-Belages mit modifiziertem Härter aufgezeigt. Die Untersuchungen hinsichtlich des ein- beziehungsweise zweilagigen Belagsaufbaus ergaben keine Unterschiede der Ebenheiten und der Abreissfestigkeiten der hergestellten Beläge. Auch wurde nachgewiesen, dass der homogene Belagsaufbau sowohl bei einem einlagigen als auch bei einem zweilagigen Belagsaufbau gleichermaßen hergestellt werden kann. Daher wurde die ursprünglich vorgesehene Festlegung eines zweilagigen Belagsaufbaus nicht in die ZTV-RHD-ST übernommen, sondern den Herstellern wurde der ein- oder zweilagige Belagsaufbau freigestellt. Parallel zu diesen Untersuchungen an den RHD-Belägen wurden an einer Fahrbahnplatte Durchbiegungsmessungen durchgeführt, um nachzuweisen, ob das bei der Grundprüfung verwendete Belastungskollektiv auch für die Prüfung der auf einem D-Brücken-Gerät verwendeten RHD-Beläge ausreicht oder ob für diesen Anwendungsfall eine modifizierte Dauerschwellbiegeprüfung notwendig ist. Hierzu wurde aus umfangreichen Messungen ein Belastungskollektiv für die Durchbiegungen an der Fahrbahnplatte einer D-Brücke abgeleitet und mit dem bei der Grundprüfung verwendeten Belastungskollektiv verglichen. Es konnte nachgewiesen werden, dass das bei der Grundprüfung verwendete Belastungskollektiv die Belastungen und Verformungen der RHD-Beläge auf der Fahrbahnplatte einer D-Brücke mit abdeckt. Es ist keine gesonderte Dauerschwellbiegeprüfung für diesen Anwendungsfall notwendig. Anhand der durchgeführten Untersuchungen konnten eine Reihe der bei der Erarbeitung der ZTV-RHD-ST getroffenen Festlegungen überprüft oder angepasst und in die ZTV übernommen werden. Die Möglichkeit des Einsatzes der nach diesen Festlegungen modifizierten RHD-Beläge auf den Fahrbahnplatten eines D-Brücken-Gerätes wurde nachgewiesen.
Beläge auf Brücken sind Bestandteile der Straße und haben in erster Linie die Anforderungen zu erfüllen, die sich aus verkehrstechnischer Sicht ergeben. In diesem Zusammenhang besteht eine enge Verknüpfung mit dem Straßenbau, die zur Übernahme der geltenden Regelungen für den Belag, insbesondere für die dem Verkehr zugewandte Deckschicht führt. Auch bautechnisch gelten daher für die Zusammensetzung und Ausführung der Asphaltbeläge auf Brücken grundsätzlich die ZTV-Asphalt und ebenso die entsprechenden ergänzenden Regelwerke. Da jedoch die Unterlage für die Funktionsfähigkeit des Belages eine erhebliche Bedeutung hat, beeinflusst diese Schnittstelle den Brückenbelag erheblich und muss zu einer erweiterten Betrachtung unter bautechnischen Aspekten führen. Dieses gilt in besonderem Maße für die Stahlbrücken, die mit der orthotropen Fahrbahnplatte eine sehr differenzierte Unterlage für den Belag darstellen. Infolge hoher Radlasten auf dem Belag erfährt die orthotrope Fahrbahnplatte Verformungen, die zu hohen Spannungen in der Randzone des Asphaltbelages führen. Durch die schubfeste Verbindung Fahrbahnblech/Belag wird der Belag im Verbundkörper zum Mittragen herangezogen mit besonderen Beanspruchungen im Asphaltkörper und in der Verbundfuge. In Abhängigkeit von der Temperatur und der Art der Verbindung mit der Unterlage kann die mittragende Wirkung praktisch zwischen circa 25 Prozent und circa 60 Prozent liegen, gemessen am Unterschied der Durchbiegungen des Bleches ohne beziehungsweise mit Belag, weshalb an Beläge auf Stahlbrücken zusätzliche Anforderungen gestellt werden. Zwischen der Stahloberfläche und der Schutzschicht wird eine Dichtungsschicht angeordnet, die die Stahloberfläche gegen eindringendes Oberflächenwasser schützt und zugleich eine schubfeste Verbindung zum Asphaltbelag ermöglicht. Die baustellengerechte Ausführung dieser Dichtungsschicht stellte sich, wie die im Rahmen dieses Projektes durchgeführten Schadensanalysen und Untersuchungen gezeigt haben, als sehr problematisch heraus. Durch diese Schadensanalysen konnte in Verbindung mit umfangreichen Untersuchungen eine Optimierung dieser Dichtungsschichten erarbeitet werden. Zur Absicherung der hohen Qualität der anhand dieser Untersuchungen entwickelten Dichtungsschichten wurden Prüfungen ausgearbeitet und die Anforderungen und Toleranzen ermittelt, die bei der Grundprüfung und der Güteueberwachung dieser Dichtungsschichten einzuhalten sind. Diese sind eingeflossen in die "Zusätzlichen Technischen Vertragsbedingungen und Richtlinien für die Herstellung von Brückenbelägen auf Stahl" (ZTV-BEL-ST) und die TL- und TP-BEL-ST.
Reaktionsharzgebundene Dünnbeläge (RHD-Beläge) können als Beläge bis zu einer Dicke von 15 mm auf stählernen Fahrbahnplatten und Dienststeg-, Geh- und Radwegflächen aufgebracht werden. Ihre bevorzugten Anwendungsbereiche sind Fahrbahnen auf beweglichen Brücken (zum Beispiel Klappbrücken), auf Festbrückengeräten (zum Beispiel D-Brücken), Fußgängerbrücken und auf Nebenbereichen von stationären Brücken (zum Beispiel Geh- und Radwegen, Dienststegen, Schrammborden und Mittel- und Randkappen). Die Begehungen und Untersuchungen zu diesem Projekt konzentrierten sich auf die Begutachtung von Schadensfällen. In diesem Bericht werden daher hauptsächlich die Schwachstellen der RHD-Beläge aufgezeigt, die zum überwiegenden Teil in der Ausführung der Belagsarbeiten liegen. Dies sagt keinesfalls etwas über die grundsätzliche Qualität der RHD-Beläge aus. Ordnungsgemäß unter den vorgeschriebenen Witterungsbedingungen ausgeführte RHD-Beläge sind von sehr hoher Qualität und können durchaus eine Lebensdauer von 15, 20 oder mehr Jahren erreichen, ohne die Notwendigkeit von Instandsetzungsmaßnahmen. Diese Lebensdauer kann sich zukünftig bei der Verwendung von Chromerzschlacke und Korund als Zuschlag und Abstreuung für befahrene Beläge noch verlängern. Wenn Belagsschäden auftreten, so werden diese fast ausschließlich durch Mängel in der Ausführung hervorgerufen. Reaktionsharze sind bei ihrer Aushärtung sehr empfindlich gegenüber verschiedenen äußeren Einflüssen, weshalb die Hauptursache für Schäden an RHD-Belägen der Einbau unter ungünstigen meteorologischen Bedingungen ist. Daher befasst sich ein Hauptteil dieses Berichtes mit einer statistischen Untersuchung meteorologischer Daten zur Feststellung, in welchen Monaten RHD-Beläge mit welcher Sicherheit unter den geforderten Einbaubedingungen eingebaut werden können. Zu diesem Zweck wurden die Wetterdaten der Jahre 1995 - 1997 von sechs verschiedenen über Deutschland verteilten Wetterstationen ausgewertet, die vom Deutschen Wetterdienst in Offenbach zur Verfügung gestellt wurden.
Reaktionsharzgebundene Dünnbeläge (RHD-Beläge) gemäß dem Merkblatt für reaktionsharzgebundene Dünnbeläge auf Stahl (Februar 1984) werden als Beläge bis zu einer Dicke von 15 mm auf stählernen Fahrbahnplatten und Dienststeg-, Geh- und Radwegflächen angewendet. Auf Grund der als Bindemittel verwendeten Reaktionsharze sind die meisten dieser Belagsysteme während der Aushärtung empfindlich gegen niedrige Temperaturen und eine hohe Luftfeuchte. Da sich aber auf der Baustelle diese ungünstigen Witterungsbedingungen nicht immer mit Sicherheit ausschließen lassen, sollen zukünftig nur solche Belagsysteme zugelassen werden, die ein Mindestmaß an Unempfindlichkeit gegenüber diesen Witterungsbedingungen zeigen. Basierend auf den Ergebnissen der duchgeführten Untersuchungen wurde ein Prüfungskonzept zur "Prüfung der Empfindlichkeit der verschiedenen Belagsysteme unter ungünstigen Einbaubedingungen" formuliert. Die Mindesteinbautemperatur der verschiedenen Materialien wurde ermittelt. Die Empfindlichkeit der Reaktionsharze gegenüber feuchten Zuschlägen wurde nachgewiesen und daraus Anforderungen an die Mineralstoffe und deren Lagerung auf der Baustelle abgeleitet. Es wurden die baustellenbedingten Nachteile eines zweilagigen Belagsaufbaus untersucht und aufgezeigt. Die durch die Untersuchungen gewonnenen Erkenntnisse sind durch die Bearbeitergruppe "RHD-Beläge" im Arbeitskreis 7.10.2 "Beläge auf Strahlbrücken" der Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV) bei der zur Zeit laufenden Überarbeitung des Merkblattes zu Zusätzliche Technische Vertragsbedingungen und Richtlinien für die Herstellung von reaktionsharzgebungenen Dünnbelägen auf Stahl (ZTV-RHD-ST) eingearbeitet worden. Das vorgeschlagene Prüfungskonzept für die "Prüfung der Empfindlichkeit der verschiedenen Belagsysteme unter ungünstigen Einbaubedingungen" wurde in die Technischen Prüfvorschriften für die Prüfung der reaktionsharzgebundenen Dünnbeläge auf Stahl (TP-RHD-ST) aufgenommen.
Ausgehend von einer Vielzahl an Schäden, die in den 1970ern und 1980ern oftmals schon nach wenigen Jahren Nutzungsdauer an den Belägen auf Stahlbrücken aufgetreten sind, wurden von den Herstellern qualitativ hochwertige Abdichtungssysteme entwickelt, die zu einer deutlichen Verringerung der Schäden führten. Lange Standzeiten von 20 bis 30 Jahren sind keine Seltenheit, und die Anzahl von Schäden hat deutlich abgenommen. Als problematisch erweist sich bei einzelnen Baumaßnahmen nach wie vor die Einbauqualität, zumeist bedingt durch unzureichende Einbaubedingungen. Gerade bei den hochwertigen Baustoffen spielen die Einbaubedingungen eine entscheidende Rolle. Deshalb ist es wichtig, sowohl bei der Planung als auch bei der Ausführung diese Randbedingungen zu berücksichtigen.
Flexible Fahrbahnübergangskonstruktionen stellen für Ingenieurbauwerke mit einer Dehnlänge bis zu circa 30 m eine preiswerte Alternative zu den herkömmlichen Fahrbahnübergängen aus Stahl dar. Neben kurzen Einbauzeiten sind ein guter Rollkomfort und eine sehr geringe Geräuschentwicklung kennzeichnend für diese Bauart. Von besonderer Bedeutung für die Ausführung ist eine lückenlose Qualitätssicherung. Aufgrund neuer Baustoffe und neuer konstruktiver Ansätze ist für die Zukunft sowohl eine Erhöhung der Leistungsfähigkeit als auch eine Erweiterung des Anwendungsbereichs zu erwarten.
Auch wenn Kosten für die Fugenfüllungen der Randfugen auf Brücken beim Einbau des Belages nur eine untergeordnete Rolle spielen, so haben diese Fugenfüllungen einen großen Anteil an Schäden und den daraus resultierenden Instandsetzungsmaßnahmen. Im Rahmen des Projektes "Entwicklung eines Prüfverfahrens zur Kennzeichnung des Alterungsverhaltens von Fugenfüllungen in Verkehrsflächen" wurde bei der Bundesanstalt für Materialforschung und -prüfung (BAM) eine Mess- und Belastungseinrichtung entwickelt, mit der die in der Praxis auftretenden Beanspruchungen von Fugenmassen labortechnisch nachgestellt werden können. Dabei sollen sowohl die Fugenbewegungen als auch die witterungsbedingten Beanspruchungen simuliert werden. Zur Kalibrierung dieser Mess- und Belastungseinrichtung wurden von der BAM im Rahmen des Projektes "Untersuchungen des Verhaltens von Fugenfüllungen in Erprobungsstrecken" an der Ruhrtalbrücke Mintard im Zuge der BAB A 52 verschiedene Fugenmassen eingebaut und mehrere Jahre hinweg untersucht.
Anhand der durchgeführten Auswertungen der Wetterdaten von sechs verschiedenen repräsentativen Wetterstationen in Deutschland konnte gezeigt werden, dass die Ausführung von Arbeiten mit Reaktionsharzen als Abdichtungs- oder Belagsystem auf Stahlbrücken ohne Schutzmaßnahmen gegen störende Witterungseinflüsse nur in den Monaten Juni-September mit ausreichender Sicherheit möglich ist. In den Monaten April, Mai und Oktober sind solche Arbeiten ohne Schutzmaßnahmen nur mit einer 30- bis 40-prozentigen Sicherheit möglich, weshalb Schutzmaßnahmen oder ein ausreichend langer Zeitraum für die Durchführung der Arbeiten eingeplant werden müssen. In den Monaten Januar, Februar, März, November und Dezember können Arbeiten mit Reaktionsharzen ohne Schutzmaßnahmen mit fast 100-prozentiger Sicherheit nicht ausgeführt werden.
Für die Schutzschichten auf Stahlbrücken werden in zunehmendem Maße temperaturreduzierte Gussasphalte eingebaut. Bei der Verwendung temperaturreduzierter Gussasphalte besteht jedoch das Risiko, dass sich der Haftverbund zwischen der Schutzschicht und der Dichtungsschicht verschlechtert. Im Rahmen dieses Projektes wurde der Haftverbund der Bauart 1 nach den ZTV-ING Teil 7 Abschnitt 4 bei Verwendung von temperaturreduzierten Gussasphalten mit Einbautemperaturen von 180 -°C, 200 -°C, 220 -°C und 240 -°C untersucht. Für Einbautemperaturen von > 200 -°C konnte ein ausreichender Haftverbund nachgewiesen werden. Für eine Einbautemperatur von 180 -°C wurde eine Verringerung der Abreißfestigkeit fest gestellt, wobei die Anforderungen in den Regelwerken jedoch eingehalten wurden. Eine Verringerung der Einbautemperatur des Gussasphaltes bis ca. 200 -°C sollte möglich sein, wenn die sonstigen Einbaubedingungen günstig sind.
Temperaturen an der Unterseite orthotroper Fahrbahntafeln beim Einbau der Gussasphalt-Schutzschicht
(2003)
Zum Schutz gegen Korrosion und auch zur optischen Gestaltung erhalten Brückenteile aus Stahl Korrosionsschutzbeschichtungen. Bei dem im Regelfall erfolgenden Einbau einer Schutzschicht aus Gussasphalt auf den Deckblechoberseiten werden die Korrosionsschutzbeschichtungen der Deckblechunterseiten thermisch belastet. Eine Temperatur-Zeit-Kurve dieser thermischen Belastung wurde vor 25 Jahren an Brücken gemessen und ist in den Technischen Prüfvorschriften für die Prüfung der Dichtungsschichten und der Abdichtungs-Systeme für Brückenbeläge auf Stahl (TP-BEL-ST) dargestellt. Korrosionsschutzbeschichtungssysteme, die gemäß Anhang A zur ZTV-KOR-Stahlbauten für Deckblechunterseiten vorgesehen sind, müssen im Rahmen dieses Temperatur-Zeit-Regimes wärmebeständig sein. Der Nachweis der Wärmebeständigkeit muss durch eine Prüfung unter Zugrundelegung des aktuellen Temperatur-Zeit-Regimes erfolgen. Seit der erstmaligen Messung der Temperatur-Zeit-Kurve sind die Dichtungssysteme für Stahlbrücken weiterentwickelt worden und haben jetzt vermutlich auch wegen der größeren Dicken einen anderen Wärmedurchgang. Vor weiteren Bestimmungen der Wärmebeständigkeit der Korrosionsschutzbeschichtungssysteme muss daher das Temperatur-Zeit-Regime für die drei Dichtungsschichtregelsysteme gemäß TP-BEL-ST an geeigneten Brücken gemessen und eine neue Temperatur-Zeit-Kurve formuliert werden. Die Kurve wird weiterhin zur Abschätzung der zu erwartenden Wärmebelastung der Korrosionsschutzbeschichtungen für die Planung benötigt. Die Messung der Temperaturen erfolgte an der Unterseite der orthotropen Fahrbahntafeln von neun Bauwerken. Fünf der untersuchten Bauwerke hatten eine Reaktionsharz-Dichtungsschicht, drei Bauwerke eine Bitumen-Dichtungsschicht und ein Bauwerk eine Reaktionharz/Bitumen-Dichtungsschicht aus Bitumen-Schweissbahn. Für die Temperaturmessungen wurden selbstklebende NiCr-Folienthermoelemente verwendet, die auf die vorhandene Korrosionsschutzbeschichtung an der Unterseite der Fahrbahntafeln aufgeklebt wurden. Die gemessenen Maximaltemperaturen lagen zwischen 90,6-° Celsius und 110,0-° Celsius, bei Ausgangstemperaturen des jeweiligen Deckbleches von 3,5-° Celsius bis 26,9-° Celsius. Diese Maximaltemperaturen wurden 20 bis 30 Minuten nach der Beaufschlagung des jeweiligen Flächenelementes mit heißem Gussasphalt erreicht. Es wurde festgestellt, dass die erreichten Maximaltemperaturen und die Wärmeeinwirkungsdauer nicht nur von der Einbautemperatur des Gussasphaltes und der Umgebungstemperatur abhängen, sondern auch bauwerksspezifisch sind. Auf der Grundlage der hier erhaltenen sowie früherer Messergebnisse und deren Auswertungen wurde der Versuch unternommen, eine Berechnung der zu erwartenden Maximaltemperatur an der Unterseite der orthotropen Fahrbahntafel beim Schutzschicht-Einbau vorzunehmen. Es wurde eine Gleichung für die näherungsweise Berechnung der zu erwartenden Maximaltemperatur aufgestellt. Im Ergebnis der Temperaturmessungen an den Brücken wird für künftige Prüfungen der Wärmebeständigkeit von Korrosionsschutzsystemen eine modifizierte Temperatur-Zeit-Kurve empfohlen. Es wird vorgeschlagen, die Dauer der Wärmebeanspruchung auf 6 Stunden zu verlängern und die Temperatur-Zeit-Kurve anzupassen. Abschließend werden Vorschläge zum Verringern der Wärmebelastung von wärmeempfindlichen Korrosionsschutzbeschichtungen während des Einbaus von Gussasphalt-Schutzschichten genannt.
Verträglichkeit der Abdichtungssysteme nach den ZTV-ING 7-4 mit temperaturreduziertem Gussasphalt
(2008)
Für die Schutzschichten auf Stahlbrücken werden in zunehmendem Maße temperaturreduzierte Gussasphalte eingebaut. Bei der Verwendung temperaturreduzierter Gussasphalte besteht jedoch das Risiko, dass sich der Haftverbund zwischen der Schutzschicht und der Dichtungsschicht verschlechtert. Im Rahmen eines Projektes wurde für die drei in der ZTV-ING Teil 7 Abschnitt 4 aufgeführten Abdichtungsbauarten der Haftverbund bei Verwendung eines temperaturreduzierten Gussasphaltes mit einer Einbautemperatur von 180 -°C untersucht. Während für die Bauarten mit Bitumen- Dichtungsschicht sowie mit Reaktionsharz- Bitumen-Dichtungsschicht ein ausreichender Haftverbund nachgewiesen werden konnte, sind für die Bauart mit Reaktionsharz-Dichtungsschicht weitere Untersuchungen zur Bestimmung der minimalen Einbautemperatur des Gussasphaltes notwendig
Reaktionsharzgebundene Dünnbeläge (RHD-Beläge) gemäß dem Merkblatt für reaktionsharzgebundene Dünnbeläge auf Stahl (Februar 1984) werden als Beläge bis zu einer Dicke von 15 mm auf stählernen Fahrbahnplatten und Dienststeg-, Geh- und Radwegflächen angewendet. Auf Grund der als Bindemittel verwendeten Reaktionsharze sind die meisten dieser Belagsysteme während der Aushärtung empfindlich gegen niedrige Temperaturen und eine hohe Luftfeuchte. Da sich aber auf der Baustelle diese ungünstigen Witterungsbedingungen nicht immer mit Sicherheit ausschließen lassen, sollen zukünftig nur solche Belagsysteme zugelassen werden, die ein Mindestmaß an Unempfindlichkeit gegenüber diesen Witterungsbedingungen zeigen. Basierend auf den Ergebnissen der duchgeführten Untersuchungen wurde ein Prüfungskonzept zur "Prüfung der Empfindlichkeit der verschiedenen Belagsysteme unter ungünstigen Einbaubedingungen" formuliert. Die Mindesteinbautemperatur der verschiedenen Materialien wurde ermittelt. Die Empfindlichkeit der Reaktionsharze gegenüber feuchten Zuschlägen wurde nachgewiesen und daraus Anforderungen an die Mineralstoffe und deren Lagerung auf der Baustelle abgeleitet. Es wurden die baustellenbedingten Nachteile eines zweilagigen Belagsaufbaus untersucht und aufgezeigt. Die durch die Untersuchungen gewonnenen Erkenntnisse sind durch die Bearbeitergruppe "RHD-Beläge" im Arbeitskreis 7.10.2 "Beläge auf Strahlbrücken" der Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV) bei der zur Zeit laufenden Überarbeitung des Merkblattes zu Zusätzliche Technische Vertragsbedingungen und Richtlinien für die Herstellung von reaktionsharzgebungenen Dünnbelägen auf Stahl (ZTV-RHD-ST) eingearbeitet worden. Das vorgeschlagene Prüfungskonzept für die "Prüfung der Empfindlichkeit der verschiedenen Belagsysteme unter ungünstigen Einbaubedingungen" wurde in die Technischen Prüfvorschriften für die Prüfung der reaktionsharzgebundenen Dünnbeläge auf Stahl (TP-RHD-ST) aufgenommen.
Es wird über Untersuchungen zur Feststellung der Bewegungen von Randfugen auf Brücken berichtet. Die Untersuchungen dienten der Frage, ob der bisher bei Randfugen auf Brücken verwendete Unterfüllstoff oder Trennstreifen zwischen den Fugenfüllungen neben der Schutzschicht und neben der Deckschicht weggelassen werden kann. Ferner sollte ein praxisgerechtes Kollektiv der Fugenbewegungen für labormäßige Prüfungen und Untersuchungen der Fugenmassen ermittelt werden. Der Beitrag berichtet über Untersuchungsmethoden und stellt Ergebnisse vor.
Bericht über ein Forschungsprojekt in dem das Tieftemperatur- und Ermüdungsverhalten von Gussasphalt, der mit verschiedenen Bindemitteln hergestellt wurde, untersucht wird. Anlass hierfür war der geäußerte Wunsch, zu erneuernde Gussasphaltbeläge sehr stark befahrener Brücken zur Verringerung von Spurrillenbildung mit dem härteren Bitumen PmB 25 A anstelle des vorgeschriebenen weicheren Bitumens PmB 45 A herzustellen. Die Lebensdauer der Beläge soll damit erhöht werden. Es werden Dauerschwellbiegeprüfungen und Biegezugversuche durchgeführt. Einzelheiten der Versuchsdurchführung werden mitgeteilt. Neben dem Normenbitumen (30/45) als Referenzbitumen werden zwei polymermodifizierte Bitumen (PmB 25 A) und PmB 45 A) und zwei Sonderbitumen verwendet. Die Versuchsergebnisse sollen Anfang des Jahres 2003 vorliegen.
Im Rahmen des BASt-Projektes "Neue reaktionsharzgebundene Dünnbeläge" als Fahrbahnbeläge auf einem "D-Brücken-Gerät" wurden RHD-Beläge nach den Vorgaben der ZTV-RHD-ST bei einer praktischen Anwendung auf einer Behelfsbrücke im Zuge der Bundesstraße B 51 bei Wuppertal untersucht. Dabei konnten die Vorgaben der ZTV-RHD-ST, vor allem der homogene Belagsaufbau und die vorgeschriebenen Abstreumaterialien, eindrucksvoll betätigt werden. Die ZTV-/TL-TP-RHD-ST wurden mit ARS Nummer 29/1999 vom 11. Dezember 1999 für den Geschäftsbereich der Bundesfernstraßen eingeführt. Den Herstellern wurde eine Übergangszeit bis zum 31. Dezember 2000 eingeräumt, in der noch RHD-Beläge nach dem "Merkblatt für reaktionsharzgebundene Dünnbeläge auf Stahl" zugelassen waren. Seit dem 1.1.2001 dürfen nur noch RHD-Beläge nach den ZTV-RHD-ST verwendet werden. In der gültigen Zusammenstellung der geprüften Dünnbeläge nach den ZTV-RHD-ST für die Anwendung an Bauwerken und Bauteilen der Bundesverkehrswege, Stand 12. Februar 2001, sind drei RHD-Belagsysteme aufgeführt. Es handelt sich hierbei um ein System auf der Basis von Epoxidharz/Polyurethan sowie um zwei Polyurethan-Systeme. Ein weiteres Belagsystem auf der Basis von Methacrylat befindet sich zurzeit in der Grundprüfung.
Die Korrosionsbeschichtungen von Brückenteilen aus Stahl werden beim nachträglichen Einbau einer Gussasphaltschicht durch Hitzeeinwirkungern belastet, wodurch es zu Beschädigungen kommen kann. Die Autoren befassen sich mit der Frage, wie groß derartige Wärmebelastungen sind, wie sie prüftechnisch simuliert und wie sie künftig in der Baupraxis minimiert werden können.
Auch wenn Kosten für die Fugenfüllungen der Randfugen auf Brücken beim Einbau des Belages nur eine untergeordnete Rolle spielen, so haben diese Fugenfüllungen einen großen Anteil an Schäden und den daraus resultierenden Instandsetzungsmaßnahmen. Für die Festlegung der Ausbildung der Fugenfüllungen (z.B. mit oder ohne Unterfüllstoff) und eine Optimierung der verwendeten Materialien ist es wichtig, die tatsächlichen Belastungen, also insbesondere die Fugenbewegungen zu kennen. Um die tatsächlich auftretenden Fugenbewegungen an der Ruhrtalbrücke Mintard im Zuge der BAB A 52 abschätzen zu können, wurden im Rahmen dieses BASt-Projektes kurzfristige, tageszyklische sowie langfristige Fugenbewegungen an den Randfugen gemessen. Dabei waren drei Gruppen von Fugenbewegungen zu unterscheiden: - Fugenbewegungen infolge Tragwerksverformungen durch Verkehrslasten, - tageszyklische Fugenbewegungen basierend auf Temperaturunterschieden zwischen dem Belag und der Unterlage oder zwischen der Kappe und der Unterlage, sowie auf unterschiedlichen Ausdehnungskoeffizienten des Belages und der Unterlage, - langfristige bis jahreszyklische Fugenbewegungen, z.B. aus langfristigen bis jahreszeitlichen Temperaturschwankungen. Für die Fugenbewegungen aus Verkehr ergaben sich Maximalwerte von ca. 16 -µm. Bei der Betrachtung der Ergebnisse ist eine Häufung der Fugenbewegungen aus Verkehr in dem Bereich zwischen 10 -µm und 16 -µm zu erkennen. Die Fugenbewegungen in diesem Bereich können zu einem großen Teil dem Fahrzeugtyp 10 (Sattelfahrzeug mit der Achsfolge 1+1+3) zugeordnet werden. Es ist anzunehmen, dass diese Fugenbewegungen also durch Fahrzeuge mit einem Gewicht im Bereich von 40 t verursacht werden. Der Verlauf der Fugenbewegungen entspricht einer Einflusslinie mit einer Frequenz von ca. 1,1 Hz. Bei den tageszyklischen Fugenbewegungen ergaben sich für maximale tageszyklische Temperaturunterschiede von 11 K maximale Fugenbewegungen von 0,08 mm. Werden diese gemessenen Fugenbewegungen auf die bei maximal möglichen tageszyklischen Temperaturänderungen von 15 K zu erwartenden Werte extrapoliert, so ergeben sich für die Fugenbewegungen der Ruhrtalbruecke Mintard maximale Fugenbewegungen von 0,12 mm. In einem zweiten Schritt wurden die langfristigen bis jahreszeitlichen Fugenbewegungen gemessen. Die gemessenen Fugenbewegungen lagen im Mittel bei 0,7 mm (wobei diese Messwerte aufgrund des Messverfahrens auch die Fugenbewegungen aus Verkehr sowie die tageszyklischen Fugenbewegungen enthalten). In einem Einzelfall wurde eine Fugenbewegung von 1,1 mm gemessen. Bei den im Bereich der Bundesfernstraßen verwendeten Belägen und Abdichtungssystemen nach den ZTV-ING Teil 7 Abschnitt 4 (Abdichtungen im vollen Verbund) kann bei den Randfugen auf Stahlbrücken davon ausgegangen werden, dass die Fugenbewegungen (Summe aus langfristigen, tageszyklischen und verkehrsinduzierten Fugenbewegungen) im Regelfall 1 mm nicht überschreiten. Die tageszyklischen Fugenbewegungen liegen in einer Größenordnung von < 0,2 mm und die verkehrsinduzierten Fugenbewegungen in einer Größenordnung von < 0,02 mm.
Während früher standardmäßig Gussasphalt-Schutzschichten mit einer Temperatur von 240 -°C bis 250 -°C eingebaut wurden, werden heutzutage Gussasphalt-Schutzschichten immer öfter mit einer Einbautemperatur von ca. 220 -°C eingebaut. Neuere Entwicklungen machen jetzt sogar Einbautemperaturen zwischen 180 -°C und 220 -°C möglich, ohne die Verarbeitbarkeit der Gussasphalte unzulässig einzuschränken. Für eine gute Verklebung der Gussasphalt-Schutzschicht mit der Abdichtung spielt aber eine ausreichende Erwärmung und teilweise Verflüssigung der obersten Schicht des Abdichtungssystems eine entscheidende Rolle. Vor diesem Hintergrund besteht Klärungsbedarf, welche Auswirkungen die Absenkung der Einbautemperatur des Gussasphaltes auf den Haftverbund zwischen der Schutzschicht und der Abdichtung haben kann. Im Rahmen des Forschungsprojektes AP 05226 wurde nachgewiesen, dass bei den Abdichtungssystemen der Bauart 2 mit Bitumen-Dichtungssystem und der Bauart 3 mit Reaktionsharz/Bitumen-Dichtungssystem bei der Verwendung von temperaturreduzierten Gussasphalten keine signifikante Verschlechterung der Abreißfestigkeiten entsteht. Diese Bauarten sollten also auch bei der Verwendung von temperaturreduziertem Gussasphalt ohne Risiko einsetzbar sein. Bei Abdichtungssystemen der Bauart 1 (Reaktionsharz-Dichtungsschicht) ergaben sich bei der Verwendung eines temperaturreduzierten Gussasphaltes mit einer Einbautemperatur von 180 -°C geringere Abreißfestigkeiten als die normalerweise bei einer Gussasphalt-Einbautemperatur von 240-250 -°C festgestellten Werte. Für diese Bauart war daher keine endgültige Aussage über die mögliche minimale Einbautemperatur möglich. Im Rahmen des hier vorgestellten Forschungsprojektes sollte geklärt werden, wie sich die Abdichtungssysteme der Bauart 1 bei der Verwendung von Gussasphalt mit Einbautemperaturen von 180 -°C, 200 -°C, 220 -°C und 240 -°C verhalten. Bei den mit einer Einbautemperatur von 180 -°C hergestellten Probekörpern liegen die Abreißfestigkeiten im Mittel bei 0,52 N/mm2. Dies bestätigt die im Rahmen des Forschungsprojektes AP 05226 festgestellten Ergebnisse. Bei den mit 200 -°C hergestellten Probekörpern ergeben sich Abreißfestigkeiten von im Mittel 0,62 N/mm2, bei den mit 220 -°C hergestellten Probekörpern von im Mittel 0,66 N/mm2 und bei den mit 240 -°C hergestellten Probekörpern von im Mittel 0,64 N/mm2. Die Abreißwerte liegen damit geringfügig unter den aus den Erfahrungen der Vergangenheit erwarteten Werten, jedoch ausreichend über den Anforderungen in den Regelwerken. Für die zwischen 200 -°C und 240 -°C hergestellten Probekörper ergeben sich keine erkennbaren Unterschiede in den festgestellten Abreißfestigkeiten, die Unterschiede liegen innerhalb der Messgenauigkeiten. Unter ansonsten günstigen Einbaubedingungen sollte der Gussasphalteinbau mit einer Einbautemperatur von >= 200 -°C zu ausreichenden Abreißfestigkeiten zwischen der Schutzschicht und der Pufferschicht führen. Eine gewisse Vorsicht ist geraten, wenn die Einbaubedingungen, vor allem die Temperatur der Unterlage, ungünstig sind. Gegebenenfalls ist dann eine höhere Einbautemperatur des Gussasphaltes zu wählen. Bei zusätzlich durchgeführten Untersuchungen zum Einfluss der Abstreuung der Pufferschicht auf die Zwischenhaftung zwischen der Schutzschicht und der Pufferschicht wurde nachgewiesen, dass die Abstreuung der Pufferschicht, eine exakte Einhaltung der Abstreumenge vorausgesetzt, keinen negativen Einfluss auf die Abreißfestigkeiten hat. Die Abreißfestigkeiten liegen sowohl bei Probekörpern, die bei 200 -°C hergestellt wurden, als auch bei Probekörpern, die bei 240 -°C hergestellt wurden, geringfügig über den Werten, die bei den Probekörpern ohne Abstreuung gemessen wurden. Die gefundenen Bruchbilder unterscheiden sich nur geringfügig. In über 95 % der Fälle erfolgt der Bruch als Adhäsionsversagen zwischen der Schutzschicht und der Pufferschicht. Bei der visuellen Begutachtung der Bruchbilder sind an der Unterseite der Schutzschicht Gesteinskörnungen zu erkennen. Bei den Probekörpern mit Abstreuung ist dies die Abstreuung der Pufferschicht, bei Probekörpern ohne Abstreuung sind dies Gesteinskörnungen aus dem Gussasphalt der Schutzschicht. Auf der Pufferschicht ist jeweils ein Negativabdruck zu sehen. Dieses Bruchbild lässt den Schluss zu, dass auch bei einem Einbau der Schutzschicht auf eine nicht abgestreute Pufferschicht ein ausreichender Schubverbund durch die sich in die Pufferschicht eindrückenden Gesteinskörnungen der Schutzschicht sichergestellt ist.
Die "Zusätzlichen Technischen Vertragsbedingungen und Richtlinien für die Herstellung von Brückenbelägen auf Stahl" (ZTV-BEL-ST 92) einschließlich der Technischen Lieferbedingungen (TL-BEL-ST) und der Technischen Prüfvorschriften (TP-BEL-ST) wurden im Jahr 1992 eingeführt und lösten das bis dahin gültige "Merkblatt für bituminöse Brückenbeläge auf Stahl" ab. Mit Einführung dieser neuen Vorschriften wurde eine Reihe neuer Prüfungen und Anforderungen für die Abdichtungssysteme für Stahlbrücken vorgeschrieben. Ein Teil der Prüfungen und Anforderungen konnte aufgrund fehlender Erfahrungen nicht endgültig formuliert werden, sondern wurde als Vorschlag in die Vorschriften aufgenommen. Um entsprechende Erfahrungen zu sammeln, die bei einer späteren Überarbeitung in die Regelwerke einfließen sollten. Durch die Auswertung der Ergebnisse der seit der Einführung der ZTV-BEL-ST 92 durchgeführten Grundprüfungen sowie Eigen- und Fremdüberwachungen konnten die Anforderungen und Toleranzen für die Prüfungen der Abdichtungssysteme für Beläge auf Stahlbrücken überprüft und angepasst werden. Für eine Reihe von Prüfungen konnten anhand der Ergebnisse erstmals Anforderungen und Toleranzen festgelegt werden. In der zurzeit gültigen Fassung der ZTV-BEL-ST sind hinsichtlich der Standfestigkeit der verschiedenen Abdichtungssysteme in Abhängigkeit von der resultierenden Neigung der Fahrbahntafel und der Verkehrsbelastung fünf verschiedene Verschiebungsklassen zugelassen. Zukünftig wird unabhängig von der Neigung und der Verkehrsbelastung die Verschiebungsklasse 1 gefordert, da sich diese Verschiebungsklasse bei allen drei Bauarten der Abdichtungssysteme erreichen lässt. Die thermische Belastungsprüfung der Reaktionsharzschichten unter Verwendung von heißem Silikonol wurde aus Arbeitsschutzgründen durch eine thermische Belastungsprüfung unter Verwendung von heißem Sand ersetzt. Die analytischen Prüfungen zur Identifizierung der Reaktionsharze wurden durch die Thermogravimetrische Analyse ergänzt. In Verbindung mit der IR-Spektroskopie ist so im Zweifelsfall eine schnelle Überprüfung der verwendeten Materialien möglich. Die Prüfbedingungen wurden anhand einer Ringanalyse festgelegt. Des Weiteren konnte die Anwendbarkeit der Gelpermeationschromatographie zur Bestimmung des Anteils der Polymere in der Klebemasse von Bitumen-Schweißbahnen bei aPP-modifiziertem Bitumen nachgewiesen und die erreichbare Genauigkeit bestimmt werden. Für die Dauerschwellbiegeprüfung wurde ein neues praxisgerechtes Belastungskollektiv eingeführt. Im Anschluss an die Dauerschwellbiegeprüfung werden an den beanspruchten Probekörpern die Abreissfestigkeiten an drei festgelegten Stellen gemessen. Anhand der durchgeführten Untersuchungen konnten die noch vorhandenen Lücken in den Prüfvorschriften für die Prüfung der Abdichtungssysteme für Beläge auf Stahlbrücken geschlossen werden.
Verträglichkeit der Abdichtungssysteme nach den ZTV-ING 7-4 mit temperaturreduziertem Gussasphalt
(2008)
Während früher standardmäßig Gussasphalt-Schutzschichten mit einer Temperatur von 240-° C bis 250-° C eingebaut wurden, werden heutzutage Gussasphalt-Schutzschichten immer öfter mit einer Einbautemperatur von ca. 220-° C eingebaut. Neuere Entwicklungen lassen jetzt sogar Einbautemperaturen zwischen 180-° C und 220-° C zu, ohne die Verarbeitbarkeit der Gussasphalte unzulässig einzuschränken. Für eine gute Verklebung der Gussasphalt-Schutzschicht mit der Abdichtung spielen aber eine ausreichende Erwärmung und teilweise Verflüssigung der obersten Schicht des Abdichtungssystems eine entscheidende Rolle. Vor diesem Hintergrund besteht Klärungsbedarf, welche Auswirkungen die Absenkung der Einbautemperatur des Gussasphaltes auf den Haftverbund zwischen der Schutzschicht und der Abdichtung haben kann. Aus diesem Grund wurden im Rahmen des Projektes an ausgesuchten Abdichtungssystemen Untersuchungen über das Haftverhalten bei der Verwendung eines temperaturreduzierten Gussasphaltes durchgeführt. Die Probekörper wurden mit der zurzeit minimalen Einbautemperatur von 180-° C hergestellt. Wenn sich bei dieser Einbautemperatur des Gussasphaltes eine ausreichende Verklebung zeigt, ist der Nachweis der Verträglichkeit der Abdichtung mit Gussasphalten für den gesamten Temperaturbereich von 180-° bis 250-° C erbracht. Bei negativen Ergebnissen soll durch weitere Untersuchungen mit abgestuften Temperaturen der für das jweilige Abdichtungssystem zulässige Temperaturbereich ermittelt werden. Bei der Bauart 1 (Reaktionsharz-Dichtungsschicht) ergaben sich geringere Abreißfestigen, daher ist zurzeit noch keine endgültige Aussage über die mögliche minimale Einbautemperatur möglich. Bei der Bauart 2 (Bitumen-Dichtungsschicht) wurde keine Verringerung der Abreißfestigkeit erkannt. Bei der Bauart 3 (Reaktionsharz/Bitumen-Dichtungsschicht) konnte keine Verschlechterung der Verklebung erkannt werden.