Abteilung Brücken- und Ingenieurbau
Filtern
Volltext vorhanden
- ja (3) (entfernen)
Schlagworte
- Korrosionsschutz (2)
- Bauwerksprüfung (1)
- Corrosion protection (1)
- Pilotprojekt (1)
- Stahlverbundbrücken (1)
- Structural inspection (1)
- corrosion protection (1)
- pilot project (1)
- steel composite bridges (1)
Seilverspannte Brücken bilden nur einen geringen Anteil des gesamten Brückenbestandes im deutschen Straßen- und Wegenetz. Sie stellen aber wegen ihrer vielen Besonderheiten sowohl für den Entwurf und für die Bauausführung als auch für die Bauwerksprüfung eine besondere Herausforderung dar und bedürfen spezieller Fachkenntnisse. Auch für den Korrosionsschutz gelten bei Brückenseilen andere Rahmenbedingungen als bei herkömmlichen Stahlbauten. Die große Vielfalt an existierenden Brückensystemen und Seiltypen machen in der Regel einen objektspezifischen Umgang mit Brückenseilen erforderlich. Weiterentwicklungen beim Korrosionsschutz und bei Seilprüfungen tragen zur zunehmenden Komplexität bei. Da der Korrosionsschutz das maßgebende Kriterium für die Dauerhaftigkeit von Brückenseilen darstellt, ist die regelmäßige Überprüfung des Korrosionsschutzes von besonderer Bedeutung. Im Rahmen der alle sechs Jahre durchzuführenden Hauptprüfung kommt eine Vielzahl an Prüfverfahren zum Einsatz. Einige davon sind den Seilspezialisten vorbehalten, da besondere Geräte und speziell dafür qualifiziertes Personal erforderlich sind. Es gibt jedoch auch Prüfverfahren, die von Personal durchgeführt werden können, das nicht auf Seilprüfungen spezialisiert sein muss. Das vorliegende Dokument gibt einen Überblick über die in Deutschland relevanten Brückensysteme und die verschiedenen Seiltypen. Darauf aufbauend erfolgt für jeden Typ eine detaillierte Beschreibung der Varianten und Komponenten des jeweiligen Korrosionsschutzes. Abschließend wird das Thema Seilprüfung näher erörtert.
Im Sommer 2016 wurde Deutschlands erste Verbundbrücke mit feuerverzinkten Stahlträgern in der Baulast der Bundesfernstraßenverwaltung errichtet. Das Bauwerk befindet sich in Nordhessen und ist ein Überführungsbauwerk für einen Wirtschaftsweg im ländlichen Raum über den derzeit in Realisierung befindlichen Neubau der A 44 zwischen Kassel und Herleshausen (A 4).
Die Motivation für dieses Pilotprojekt rührt aus dem im letzten Jahrzehnt spürbar gewachsenen Antrieb, allerorten nachhaltige und ressourcen- sowie umweltschonende Prozesse zu etablieren und diesen auf Grundlage von Lebenszyklusbetrachtungen den Vorzug vor auf kurze Sicht scheinbar kostengünstigeren Anschaffungen zu geben. Gerade bei besonders langlebigen Anschaffungen wie Bauwerken der Infrastruktur entfallen deutlich höhere Kosten auf den Betrieb und die Unterhaltung als auf die anfängliche Herstellung. Die größten Kosten resultieren dabei aus mittelbar nötigen Aufwendungen wie z. B. Verkehrsführungen während Bauwerkssanierungen und zwischenzeitlich erforderlichen Runderneuerungen der Bauwerkssubstanz oder exponierter Teile davon (Beläge, Kappen, Lager, Fahrbahnübergänge, Korrosionsschutz). Können diese Bauteile oder Bauelemente dauerhafter hergestellt werden oder gar ganz entfallen, sind langfristige Einsparungen zu erwarten, die sogar höhere Anschaffungskosten rechtfertigen.
In mehreren Forschungsvorhaben wurden die Eignung eines Korrosionsschutzes durch Feuerverzinken auch für tragende Bauteile von Brücken, dessen Dauerhaftigkeit auch für Zeiträume in der Größenordnung der Lebensdauer des Bauwerks selbst und dessen Wirtschaftlichkeit nachgewiesen. Auf dieser Grundlage wurde frühzeitig die Entwurfsplanung dreier nahezu baugleicher und benachbart gelegener Bauwerke auf die Realisierung eines Pilotprojektes an einem der Bauwerke ausgerichtet, während die beiden anderen als Referenzbauwerke konventionell hergestellt und beschichtet wurden.
Das Pilotprojekt zielt darauf ab, an einem realen Bauwerk einerseits Erfahrungen bei der konkreten Umsetzung zu sammeln, die Besonderheiten im Herstellprozess herauszuarbeiten und zu bewerten, um sie ggf. in künftigen Regelwerken zu verarbeiten, und andererseits im direkten Vergleich mit den Nachbarbauwerken Erfahrungen im weiteren Betrieb sammeln zu können.
Der hier vorliegende Bericht möge dem interessierten Leser einen tiefen Einblick in die vielfältigen Aspekte geben, denen bei der Realisierung einer feuerverzinkten Konstruktion Beachtung zu schenken ist. Er soll sowohl Bauherren als auch Planern und Ausführenden einen im Wesentlichen an der Chronologie der Maßnahme orientierten roten Faden bieten. Die aufgeführten Gesichtspunkte treten mitunter im Kontext mehrerer Themenkreise auf, daher sind einzelne Wiederholungen bewusst nicht vermieden.
Die wesentlichen Aspekte werden abschließend noch einmal zusammengestellt. Diese und die vielen kleinen Gesichtspunkte sollten bei künftigen Projekten in einer frühen Phase und in dem konkreten Projektkontext bewertet werden und zu projektspezifischen Entscheidungen führen.
Aufgrund des großen Potenzials sind die Forschungen fortgesetzt und z. B. auf andere Fügetechniken ausgedehnt worden. Die Ergebnisse werden erwartungsgemäß das Einsatzgebiet der Feuerverzinkung als kostengünstigen, langlebigen und recyclebaren Korrosionsschutz im Verbundbrückenbau erweitern.
Bei Fahrbahnoberflächen von Brücken kommt es schneller zur Bildung von Glätte als auf Straßenabschnitten mit direktem Kontakt zum Erdboden. Insbesondere bei Brücken an ungünstigen Standorten wie in der Nähe von Gewässern oder in Einschnitten besteht vor allem im Spätherbst und im zeitigen Frühjahr eine besondere Gefahr für die Verkehrsteilnehmer.
Dem erhöhten Sicherheitsrisiko wird in der Regel mit einem intensivierten Winterdienst begegnet, was allerdings einen überdurchschnittlich hohen Zeitaufwand und Personaleinsatz bedeutet. Taumittelsprühanlagen können zu einer Entlastung führen, sind jedoch aufgrund ökologischer und ökonomischer Bedenken umstritten. Eine Alternative stellt die Temperierung der Fahrbahn dar, die im BAStBericht B 87 „Vermeidung von Glättebildung auf Brücken durch die Nutzung von Geothermie“ ausführlich erläutert ist.
Beim Ersatzneubau der Brücke über den Elbe-Lübeck-Kanal in der Ortslage Berkenthin kam erstmals in Deutschland eine mittels Geothermie temperierte Fahrbahnplatte zum Einsatz. Im Rahmen der fachtechnischen Begleitung dieser Pilotanwendung erfolgten umfangreiche Temperaturmessungen an der alten Brücke, und es wurden Einbau sowie Inbetriebnahme der Temperierungseinrichtung bei der neuen Brücke dokumentiert.
Zwei Aspekte stellen dabei eine grundlegende Innovation bei der Temperierung von Fahrbahnbelägen dar. Zum einen wurden die Rohrregister erfolgreich „schwimmend“ inmitten des Asphaltkörpers platziert, und zum anderen wird die Anlage über ein Mess, Steuer- und Regelungssystem betrieben, sodass eine Temperierung nur im Bedarfsfall erfolgt.
Die ursprünglich vorgesehene vergleichende Betrachtung des Temperaturverhaltens konnte in Ermangelung geeigneter Messdaten der neuen Brücke nicht erfolgen. Somit war eine quantitative Bewertung der temperierten Fahrbahn nicht möglich. Ungeachtet dessen werden aus den gewonnenen Erkenntnissen bautechnische Empfehlungen abgeleitet, die sich für ähnliche Maßnahmen als hilfreich erweisen dürften.
Der Originalbericht enthält als Anhang einige ausgewählte Temperaturverläufe und eine gutachterliche Stellungnahme zum thermischen Verhalten von beheizten Fahrbahnplatten und deren Temperierungssystem auf Brücken.