Refine
Document Type
- Conference Proceeding (5)
- Article (2)
- Working Paper (1)
Keywords
- Anfahrversuch (7)
- Prüfverfahren (6)
- Test method (6)
- Bewertung (5)
- Evaluation (assessment) (5)
- Impact test (veh) (5)
- Vehicle (5)
- Compatibility (4)
- Deformable barrier (impact test) (4)
- Deformierbare Barriere (Anpralltest) (4)
Institute
- Abteilung Fahrzeugtechnik (8)
- Sonstige (6)
The goal of the project FIMCAR (Frontal Impact and Compatibility Assessment Research) was to define an integrated set of test procedures and associated metrics to assess a vehicle's frontal impact protection, which includes self- and partner-protection. For the development of the set, two different full-width tests (full-width deformable barrier [FWDB] test, full-width rigid barrier test) and three different offset tests (offset deformable barrier [ODB] test, progressive deformable barrier [PDB] test, moveable deformable barrier with the PDB barrier face [MPDB] test) have been investigated. Different compatibility assessment procedures were analysed and metrics for assessing structural interaction (structural alignment, vertical and horizontal load spreading) as well as several promising metrics for the PDB/MPDB barrier were developed. The final assessment approach consists of a combination of the most suitable full-width and offset tests. For the full-width test (FWDB), a metric was developed to address structural alignment based on load cell wall information in the first 40 ms of the test. For the offset test (ODB), the existing ECE R94 was chosen. Within the paper, an overview of the final assessment approach for the frontal impact test procedures and their development is given.
To improve vehicle safety in frontal collisions, the crash compatibility between the colliding vehicles is crucial. Compatibility aims to improve both the self and partner protection properties of vehicles. Although compatibility has received worldwide attention for many years, no final assessment approach has been defined. Within the Frontal Impact and Compatibility Assessment Research (FIMCAR) project, different frontal impact test procedures (offset deformable barrier [ODB] test as currently used for Economic Commission for Europe [ECE] R94, progressive deformable barrier test as proposed by France for a new ECE regulation, moveable deformable barrier test as discussed worldwide, full-width rigid barrier test as used in Federal Motor Vehicle Safety Standard [FMVSS] 208, and full-width deformable barrier test) were analyzed regarding their potential for future frontal impact legislation. The research activities focused on car-to-car frontal impact accidents based on accident investigations involving newer cars. Test procedures were developed with both a crash test program and numerical simulations. The proposal from FIMCAR is to use a full-width test procedure with a deformable element and compatibility metrics in combination with the current offset test as a frontal impact assessment approach that also addresses compatibility. By adding a full-width test to the current ODB test it is possible to better address the issues of structural misalignment and injuries resulting from high acceleration accidents as observed in the current fleet. The estimated benefit ranges from a 5 to 12 percent reduction of fatalities and serious injuries resulting from frontal impact accidents. By using a deformable element in the full-width test, the test conditions are more representative of real-world situations with respect to acceleration pulse, restraint system triggering time, and deformation pattern of the front structure. The test results are therefore expected to better represent real-world performance of the tested car. Furthermore, the assessment of the structural alignment is more robust than in the rigid wall test.
The objectives of the FIMCAR (Frontal Impact and Compatibility Assessment Research) project are to answer the remaining open questions identified in earlier projects (such as understanding of the advantages and disadvantages of force based metrics and barrier deformation based metrics, confirmation of specific compatibility issues such as structural interaction, investigation of force matching) and to finalise the frontal impact test procedures required to assess compatibility. Research strategies and priorities were based on earlier research programs and the FIMCAR accident data analysis. The identified real world safety issues were used to develop a list of compatibility characteristics which were then prioritised within the consortium. This list was the basis for evaluating the different test candidates. This analysis resulted in the combination of the Full Width Deformable Barrier test (FWDB) with compatibility metrics and the existing Offset Deformable Barrier (ODB) as described in UN-ECE Regulation 94 with additional cabin integrity requirement as being proposed as the FIMCAR assessment approach. The proposed frontal impact assessment approach addresses many of the issues identified by the FIMCAR consortium but not all frontal impact and compatibility issues could be addressed.
For the assessment of vehicle safety in frontal collisions, the crash compatibility between the colliding vehicles is crucial. Compatibility compromises both the self protection and the partner protection properties of vehicles. For the accident data analysis, the CCIS (GB) and GIDAS (DE) in-depth data bases were used. Selection criteria were frontal car accidents with car in compliance with ECE R94. For this study belted adult occupants in the front seats sustaining MAIS 2+ injuries were studied. Following this analysis FIMCAR concluded that the following compatibility issues are relevant: - Poor structural interaction (especially low overlap and over/underriding) - Compartment strength - Frontal force mismatch with lower priority than poor structural interaction In addition injuries arising from the acceleration loading of the occupant are present in a significant portion of frontal crashes. Based on the findings of the accident analysis the aims that shall be addressed by the proposed assessment approach were defined and priorities were allocated to them. The aims and priorities shall help to decide on suitable test procedures and appropriate metrics. In general it is anticipated that a full overlap and off-set test procedure is the most appropriate set of tests to assess a vehicle- frontal impact self and partner protection.
Past European collaborative research involving government bodies, vehicle manufacturers and test laboratories has resulted in a prototype barrier face called the Advanced European Mobile Deformable Barrier (AE-MDB) for use in a new side impact test procedure . This procedure offers a better representation of the current accident situation and, in particular, the barrier concept is a better reflection of front-end stiffness seen in today- passenger car fleet compared to that of the current legislative barrier face. Based on the preliminary performance corridors of the prototype AE-MDB, a refined AE-MDB specification has been developed. A programme of barrier to load cell wall testing was undertaken to complete and standardise the AE-MDB specification. Barrier faces were supplied by the four leading manufacturers to demonstrate that the specification could be met by all. This paper includes background, specification and proof of compliance.
At the 2005 ESV conference, the International Harmonisation of Research Activities (IHRA) side impact working group proposed a 4 part draft test procedure, to form the basis of harmonisation of regulation world-wide and to help advances in car occupant protection. This paper presents the work performed by a European Commission 6th framework project, called APROSYS, an further development and evaluation of the proposed procedure from a European perspective. The 4 parts of the proposed procedure are: - A Mobile Deformable Barrier test; - An oblique Pole side impact test; - Interior headform tests; - Side Out of Position (OOP) tests. Full scale test and modelling work to develop the Advanced European Mobile Deformable Barrier (AE-MDB) further is described, resulting in a recommendation to revise the barrier face to include a bumper beam element. An evaluation of oblique and perpendicular pole tests was made from tests and numerical simulations using ES-2 and WorldSID 50th percentile dummies. It was concluded that an oblique pole test is feasible but that a perpendicular test would be preferable for Europe. The interior headform test protocol was evaluated to assess its repeatability and reproducibility and to solve issues such as the head impact angle and limitation zones. Recommendations for updates to the test protocol are made. Out-of-position (OOP) tests applicable for the European situation were performed, which included additional tests with Child Restraint Systems (CRS) which use is mandatory in Europe. It was concluded that the proposed IHRA OOP tests do cover the worst case situations, but the current test protocol is not ready for regulatory use.
The European Enhanced Vehicle-safety Committee (EEVC) Working Group 13 for Side Impact Protection has been developing an Interior Headform Test Procedure to complement the full-scale Side Impact Test Procedure for Europe and for the proposed IHRA test procedures. In real world accidents interior head contacts with severe head injuries still occur, which are not always observed in standard side impact tests with dummies. Thus a means is needed to encourage further progress in head protection. At the 2003 ESV-Conference EEVC Working Group 13 reported the results on Interior Headform Testing. Further research has been performed since and the test procedure has been improved. This paper gives an overview of its latest status. The paper presents new aspects which are included in the latest test procedure and the research work leading to these enhancements. One topic of improvement is the definition of the Free Motion Headform (FMH) impactor alignment procedure to provide guidelines to minimize excessive headform chin contact and to minimize potential variability. Research activities have also been carried out on the definition of reasonable approach head angles to avoid unrealistic test conditions. Further considerations have been given to the evaluation of head airbags, their potential benefits and a means of ensuring protection for occupants regardless of seating position and sitting height. The paper presents the research activities that have been made since the last ESV Conference in 2003 and the final proposal of the EEVC Headform Test Procedure.
When the EEVC proposed the full-scale side impact test procedure, it recommended that consideration should be given to an interior headform test in addition. This was to evaluate areas of contact not assessed by the dummy. EEVC Working Group 13 has been researching the parameters of a possible European headform test procedure in four phases. Earlier stages of the research have been presented at previous ESV conferences. The conclusions from these have suggested that the US free motion headform should be used in any European test procedure and that it should be a free flight test, not guided. This research has now culminated in proposals for a European test procedure. This paper presents the proposed EEVC side impact interior headform test procedure, giving the rationale for the test and the first results from the validation phase of the test protocol.