Refine
Document Type
- Conference Proceeding (7)
- Working Paper (1)
Keywords
- Impact test (veh) (6)
- Anfahrversuch (5)
- Head (4)
- Kopf (4)
- Prüfverfahren (4)
- Seitlicher Zusammenstoß (4)
- Side impact (4)
- Test method (4)
- Bewertung (3)
- Evaluation (assessment) (3)
Institute
- Abteilung Fahrzeugtechnik (8)
- Sonstige (4)
Past European collaborative research involving government bodies, vehicle manufacturers and test laboratories has resulted in a prototype barrier face called the Advanced European Mobile Deformable Barrier (AE-MDB) for use in a new side impact test procedure . This procedure offers a better representation of the current accident situation and, in particular, the barrier concept is a better reflection of front-end stiffness seen in today- passenger car fleet compared to that of the current legislative barrier face. Based on the preliminary performance corridors of the prototype AE-MDB, a refined AE-MDB specification has been developed. A programme of barrier to load cell wall testing was undertaken to complete and standardise the AE-MDB specification. Barrier faces were supplied by the four leading manufacturers to demonstrate that the specification could be met by all. This paper includes background, specification and proof of compliance.
The ASSESS project is a collaborative project that develops test procedures for pre-crash safety systems like Automatic Emergency Braking (AEB). One key criterion for the effectiveness of e.g. AEB is reduction in collision speed compared to baseline scenarios without AEB. The speed reduction for a given system can only be determined in real world tests that will end with a collision. Soft targets that are crashable up to velocities of 80 km/h are state of the art for these assessments, but ordinary balloon cars are usually stationary targets. The ASSESS project goes one step further and defines scenarios with moving targets. These scenarios define vehicle speeds of up to 100 km/h, different collision scenarios and relative collision speeds of up to 80km/h. This paper describes the development of a propulsion system for a soft target that aims to be used with these demanding scenario specifications. The Federal Highway Research Institute- (BASt-) approach to move the target is a self-driving small cart. The cart is controlled either by a driver (open-loop control via remote-control) or by a computer (closed-loop control). Its weight is limited to achieve a good crashability without damages to the test vehicle. To the extent of our knowledge BASt- approach is unique in this field (other carts cannot move at such high velocities or are not crashable). This paper describes in detail the challenges and solutions that were found both for the mechanical construction and the implementation of the control and safety system. One example for the mechanical challenges is e.g. the position of the vehicle- center of gravity (CG). An optimum compromise had to be found between a low CG oriented to the front of the vehicle (good for driveability) and a high CG oriented to the rear of the vehicle (good for crashability). The soft target itself which is also developed within the ASSESS project will not be covered in detail as this is work of a project partner. Publications on this will follow. The paper also shows first test results, describes current limitations and gives an outlook. It is expected that the presented test tools for AEB and other pre-crash safety systems is introduced in the future into consumer testing (NCAP) as well as regulatory testing.
At the 2005 ESV conference, the International Harmonisation of Research Activities (IHRA) side impact working group proposed a 4 part draft test procedure, to form the basis of harmonisation of regulation world-wide and to help advances in car occupant protection. This paper presents the work performed by a European Commission 6th framework project, called APROSYS, an further development and evaluation of the proposed procedure from a European perspective. The 4 parts of the proposed procedure are: - A Mobile Deformable Barrier test; - An oblique Pole side impact test; - Interior headform tests; - Side Out of Position (OOP) tests. Full scale test and modelling work to develop the Advanced European Mobile Deformable Barrier (AE-MDB) further is described, resulting in a recommendation to revise the barrier face to include a bumper beam element. An evaluation of oblique and perpendicular pole tests was made from tests and numerical simulations using ES-2 and WorldSID 50th percentile dummies. It was concluded that an oblique pole test is feasible but that a perpendicular test would be preferable for Europe. The interior headform test protocol was evaluated to assess its repeatability and reproducibility and to solve issues such as the head impact angle and limitation zones. Recommendations for updates to the test protocol are made. Out-of-position (OOP) tests applicable for the European situation were performed, which included additional tests with Child Restraint Systems (CRS) which use is mandatory in Europe. It was concluded that the proposed IHRA OOP tests do cover the worst case situations, but the current test protocol is not ready for regulatory use.
The European Enhanced Vehicle-safety Committee (EEVC) Working Group 13 for Side Impact Protection has been developing an Interior Headform Test Procedure to complement the full-scale Side Impact Test Procedure for Europe and for the proposed IHRA test procedures. In real world accidents interior head contacts with severe head injuries still occur, which are not always observed in standard side impact tests with dummies. Thus a means is needed to encourage further progress in head protection. At the 2003 ESV-Conference EEVC Working Group 13 reported the results on Interior Headform Testing. Further research has been performed since and the test procedure has been improved. This paper gives an overview of its latest status. The paper presents new aspects which are included in the latest test procedure and the research work leading to these enhancements. One topic of improvement is the definition of the Free Motion Headform (FMH) impactor alignment procedure to provide guidelines to minimize excessive headform chin contact and to minimize potential variability. Research activities have also been carried out on the definition of reasonable approach head angles to avoid unrealistic test conditions. Further considerations have been given to the evaluation of head airbags, their potential benefits and a means of ensuring protection for occupants regardless of seating position and sitting height. The paper presents the research activities that have been made since the last ESV Conference in 2003 and the final proposal of the EEVC Headform Test Procedure.
Since integrated safety systems combine active and passive safety elements in one safety system, it is necessary to define new procedures to evaluate vehicle safety from the overall system point of view. The main goal of the ASSESS project is to develop harmonized and standardized assessment procedures for collision mitigation and avoidance systems. Methods and Data Sources: In ASSESS, procedures are developed for: driver behaviour evaluation, pre-crash system performance evaluation, crash performance evaluation, socio-economic assessment. This paper will concentrate on the activities related to the crash evaluation. The objective is to perform simulations, sled tests and crash tests in order tounderstand the influence of the activation of the pre-crash systems on the occupants" injuries during the crash phase. When a traffic accident is unavoidable, pre-crash systems work on various safety devices in order to improve the vehicle occupants" protection. Braking assistance and adaptive restraint systems are the main pre-crash systems whose effect on the occupants" protection will be described in this paper. Results: The results will be a description of the effect of the activation of the pre-crash systems on the crash phase. Additionally, a set of recommendations for future methodology developments will be delivered. Furthermore, a first approach to the study of the effect of the pre-crash systems activation on the occupants" protection when the impact is unavoidable will be presented. This effect will be quantified using the biomechanical values obtained from the simulation and testing activities and their related injury risks. Simulation and testing activities will consider the following scenarios: - No activation of any pre-crash system, - Activation of one or a combination of several pre-crash systems. In this way, differences in the results obtained from different scenarios will show the effect of each pre-crash system separately during the crash phase. Discussion and Limitations: The set of activities developed in this research project is limited by the fact that with the given resources only a limited number of vehicle models could be investigated. In addition, there are also limitations related to the injury risk curves and the passive safety tools currently on the market. Conclusion and Relevance to session submitted: The paper will present a complete analysis of the effect of pre-crash systems during the crash phase when the impact is unavoidable. Details, limitations and first application experience based on a few examples will be discussed. Currently, there is not any regulation, assessment program, or other similar official procedure able to assess pre-crash systems during the crash phase. This project comprises phases of traffic accidents which have been historically analysed separately, and aims to evaluate them taking into account their interrelationship. ASSESS is one of the first European projects which deals in depth with the concept of integrated safety, defining methodologies to analyse vehicle safety from a global point of view.
When the EEVC proposed the full-scale side impact test procedure, it recommended that consideration should be given to an interior headform test in addition. This was to evaluate areas of contact not assessed by the dummy. EEVC Working Group 13 has been researching the parameters of a possible European headform test procedure in four phases. Earlier stages of the research have been presented at previous ESV conferences. The conclusions from these have suggested that the US free motion headform should be used in any European test procedure and that it should be a free flight test, not guided. This research has now culminated in proposals for a European test procedure. This paper presents the proposed EEVC side impact interior headform test procedure, giving the rationale for the test and the first results from the validation phase of the test protocol.
Evaluation of the performance of competitive headforms as test tools for interior headform testing
(2009)
The European Research Project APROSYS has evaluated the interior headform test procedure developed by EEVC WG 13, representing the head contact in the car during a lateral impact. One important aspect within this test procedure was the selection of an appropriate impactor. The WG13 procedure currently uses the Free Motion Headform as used within the FMVSS 201. The ACEA 3.5 kg headform used in Phase 1 of the European Directive and the future European Regulation on Pedestrian Protection is still discussed as a possible alternative. This paper reports work performed by the Federal Highway Research Institute (BASt) as a part of the APROSYS Task 1.1.3. The study compares the two headform impactors according to FMVSS and ACEA, in a series of basic tests in order to evaluate their sensitivity towards different impact angles, impact accuracy, the effect of differences to impactors of the same type and the effects of the repeatability and reproducibility of the test results. The test surface consisted of a steel tube covered with PU foam and PVC, representing the car interior to be tested. Despite of the higher mass of the FMH the HIC values of this impactor were generally lower than those of the ACEA headform. The FMH showed a higher repeatability of test results but a high sensitivity on the angle of roll, the spherical ACEA impactor performed better with regards to the reproducibility. In case of the ACEA impactor-, the angle of roll had no influence.
Anhand von zwei verschiedenen Versuchskonfigurationen wurde das Schutzpotential von Kopfschutzsystemen (Fahrradhelm und airbagbasiertes System) untersucht. Hierbei wurden die resultierende Kopfbeschleunigung als Messwert sowie das Kopfverletzungskriterium HIC bei Versuchen ohne und mit Kopfschutzsystem vergleichend gegenübergestellt.