Refine
Keywords
- Measurement (4) (remove)
Das Merkblatt für die Fugenfüllungen in Verkehrsflächen aus Beton einschließlich der Lieferbedingungen für bituminöse Fugenvergussmassen (TL-bit Fug 82) aus dem Jahr 1982 wurde überarbeitet. Es entstanden die Zusätzlichen Technischen Vertragsbedingungen und Richtlinien für Fugenfüllungen in Verkehrsflächen (ZTV Fug-StB 01) mit den Technischen Lieferbedingungen (TL Fug-StB 01) und den Technischen Prüfvorschriften (TP Fug-StB 01), die mit dem Allgemeinen Rundschreiben Straßenbau Nr. 29/2001 vom 31. Juli 2001 für den Bereich der Bundesfernstraßen eingeführt wurden. Als Fugenfüllungen für die Fugen zwischen dem Asphaltbelag und dem Schrammbord auf Brücken werden in den ZTV Fug-StB 01 verarbeitbare elastische Fugenmassen vorgeschrieben. Diese elastischen Fugenmassen sind für Änderungen der Fugenspaltbreite bis 35 % ausgelegt. Bei Fugenspaltbreiten ab 15 mm sind zwischen der Fugenfüllung neben der Schutzschicht und der Fugenfüllung neben der Deckschicht als Unterfüllstoff rechteckige Profile oder Trennstreifen vorzusehen. Die Vergusstiefe muss mindestens das 1,5-fache der Fugenspaltbreite betragen. Der bei den Randfugen auf Beton- und Stahlbrücken zwischen dem Fugenverguss in der Schutzschicht und dem Fugenverguss in der Deckschicht eingelegte Unterfüllstoff oder Trennstreifen soll die Drei-Flanken-Haftung verhindern, da durch sie die Belastung der Fugenflanken vergrößert wuerde, was zu einem Ablösen der Fugenflanken führen könnte. Die Verwendung des Unterfüllstoffes ist aber auch mit Nachteilen verbunden. Wird die Fuge an irgendeiner Stelle undicht, so dringt Wasser, im Winter Salzwasser, in die Fuge ein und verteilt sich entlang des Trennstreifens. Der Schrammbord wird über große Längen geschädigt, wobei diese Schädigung lange Zeit nicht erkannt werden kann. In den Arbeitskreisen 7.10.1 "Beläge auf Betonbrücken" und 7.10.2 "Beläge auf Stahlbrücken" der Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV) wurde erwogen, den Unterfüllstoff oder Trennstreifen bei den Fugen vor Schrammborden oder Bordsteinen auf Brücken wegzulassen, um die Schädigung des Bauwerks bei einem örtlichen Versagen der Fugenfüllung zu minimieren. Dies würde jedoch voraussetzen, dass die Fugenbewegungen in diesen Bereichen ausreichend klein sind, damit die erhöhte Beanspruchung der Fugenflanken aufgrund der Drei-Flanken-Haftung keine Auswirkungen hat. Zu diesem Zweck wurden im Rahmen dieses Projektes sowohl kurzfristige als auch langfristige Fugenbewegungen an 2 Beton- und 3 Stahlbrücken gemessen. Die Mindestbreite der Randfugen auf Brücken entlang der Schrammborde beträgt 2 cm. Daraus ergibt sich, dass bei Verwendung der elastischen Fugenmassen nach den ZTV Fug-StB 01 Änderungen der Fugenspaltbreite von mindestens 6,5 mm aufgenommen werden können. Die Messungen ergaben, dass die tatsächlich auftretenden Fugenbewegungen nur ca.10 % der theoretisch möglichen Fugenbewegung betragen. Ein Weglassen des Unterfüllstoffes bzw. des Trennstreifens bei Fugenfüllungen der Randfugen entlang des Schrammbordes sollte daher möglich sein. Es ist geplant, die Randfugen von etwa 10 Brücken ohne Unterfüllstoff auszuführen und die Bewährung dieser Randfugen über einen Zeitraum von 4 Jahren zu beobachten. Bei positivem Ergebnis dieses Bewährungsnachweises könnte dann die obligatorische Verwendung eines Unterfüllstoffes oder eines Trennstreifens bei Randfugen auf Brücken entfallen. Desweiteren kann aus den Messergebnissen ein praxisgerechtes Belastungskollektiv für Prüfungen oder Untersuchungen an Fugenfüllungen abgeleitet werden, welches sowohl die temperaturbedingten tages- oder jahreszyklischen Fugenbewegungen als auch die Fugenbewegungen aus Verkehr simuliert. Zur Vereinfachung des Kollektivs und da die jahreszyklischen Fugenbewegungen kleiner als die tageszyklischen Fugenbewegungen sind, reicht es aus, nur die tageszyklischen Fugenbewegungen zu simulieren. Die Frequenz muss unter Berücksichtigung der Materialeigenschaften festgelegt werden. Die Amplitude der Fugenbewegung sollte 0,45 mm betragen. Die Fugenbewegungen aus Verkehr können praxisgerecht mit einer Frequenz von ca. 1 Hz bei einer Amplitude von 30 -µm für den Lkw-Verkehr oder 0,50 -µm für Schwerlasttransporte simuliert werden. Gegebenenfalls sollte zu den vorgenannten Amplituden noch ein Zuschlag für an den hier untersuchten Brücken nicht erfasste Effekte hinzugerechnet werden.
Auch wenn Kosten für die Fugenfüllungen der Randfugen auf Brücken beim Einbau des Belages nur eine untergeordnete Rolle spielen, so haben diese Fugenfüllungen einen großen Anteil an Schäden und den daraus resultierenden Instandsetzungsmaßnahmen. Für die Festlegung der Ausbildung der Fugenfüllungen (z.B. mit oder ohne Unterfüllstoff) und eine Optimierung der verwendeten Materialien ist es wichtig, die tatsächlichen Belastungen, also insbesondere die Fugenbewegungen zu kennen. Um die tatsächlich auftretenden Fugenbewegungen an der Ruhrtalbrücke Mintard im Zuge der BAB A 52 abschätzen zu können, wurden im Rahmen dieses BASt-Projektes kurzfristige, tageszyklische sowie langfristige Fugenbewegungen an den Randfugen gemessen. Dabei waren drei Gruppen von Fugenbewegungen zu unterscheiden: - Fugenbewegungen infolge Tragwerksverformungen durch Verkehrslasten, - tageszyklische Fugenbewegungen basierend auf Temperaturunterschieden zwischen dem Belag und der Unterlage oder zwischen der Kappe und der Unterlage, sowie auf unterschiedlichen Ausdehnungskoeffizienten des Belages und der Unterlage, - langfristige bis jahreszyklische Fugenbewegungen, z.B. aus langfristigen bis jahreszeitlichen Temperaturschwankungen. Für die Fugenbewegungen aus Verkehr ergaben sich Maximalwerte von ca. 16 -µm. Bei der Betrachtung der Ergebnisse ist eine Häufung der Fugenbewegungen aus Verkehr in dem Bereich zwischen 10 -µm und 16 -µm zu erkennen. Die Fugenbewegungen in diesem Bereich können zu einem großen Teil dem Fahrzeugtyp 10 (Sattelfahrzeug mit der Achsfolge 1+1+3) zugeordnet werden. Es ist anzunehmen, dass diese Fugenbewegungen also durch Fahrzeuge mit einem Gewicht im Bereich von 40 t verursacht werden. Der Verlauf der Fugenbewegungen entspricht einer Einflusslinie mit einer Frequenz von ca. 1,1 Hz. Bei den tageszyklischen Fugenbewegungen ergaben sich für maximale tageszyklische Temperaturunterschiede von 11 K maximale Fugenbewegungen von 0,08 mm. Werden diese gemessenen Fugenbewegungen auf die bei maximal möglichen tageszyklischen Temperaturänderungen von 15 K zu erwartenden Werte extrapoliert, so ergeben sich für die Fugenbewegungen der Ruhrtalbruecke Mintard maximale Fugenbewegungen von 0,12 mm. In einem zweiten Schritt wurden die langfristigen bis jahreszeitlichen Fugenbewegungen gemessen. Die gemessenen Fugenbewegungen lagen im Mittel bei 0,7 mm (wobei diese Messwerte aufgrund des Messverfahrens auch die Fugenbewegungen aus Verkehr sowie die tageszyklischen Fugenbewegungen enthalten). In einem Einzelfall wurde eine Fugenbewegung von 1,1 mm gemessen. Bei den im Bereich der Bundesfernstraßen verwendeten Belägen und Abdichtungssystemen nach den ZTV-ING Teil 7 Abschnitt 4 (Abdichtungen im vollen Verbund) kann bei den Randfugen auf Stahlbrücken davon ausgegangen werden, dass die Fugenbewegungen (Summe aus langfristigen, tageszyklischen und verkehrsinduzierten Fugenbewegungen) im Regelfall 1 mm nicht überschreiten. Die tageszyklischen Fugenbewegungen liegen in einer Größenordnung von < 0,2 mm und die verkehrsinduzierten Fugenbewegungen in einer Größenordnung von < 0,02 mm.
Bei der weiteren Erprobung des Bohrverfahrens an Brückenbauwerken traten praktische Schwierigkeiten an einzelnen Gerätekomponenten auf, so dass insbesondere die Bohrkrone hinsichtlich ihrer Schnittleistung, der Bohrantrieb und die Schneideigenschaften und das Verschleissverhalten der Diamantbohrkrone hinsichtlich ihrer Leistungsfähigkeit überarbeitet werden mussten. Zur Beurteilung der Betonqualität im oberflächennahen Bereich ist zusätzlich eine Kleinverpressanlage zum Verpressen der Kleinbohrkerne mit einem Spezialharz entwickelt worden. Die verpressten und ausgehärteten Proben werden in Scheiben geschnitten, und die Schnittflächen können dann unter dem Mikroskop beobachtet, angesprochen und fotografiert werden. Die Dichtheit der Betondeckung ist ein wesentliches Kriterium für die Korrosionswahrscheinlichkeit der Bewehrung. Auf der Grundlage des Zustandes der Bohrkerne lässt sich recht gut auf die Eigenschaften und Qualität des Betons hinsichtlich der Bindung des Zuschlages in der Zementsteinmatrix und der Festigkeit sowie auf die Intensität der Nachbehandlung schließen. Wenn man in Betonen unterschiedlicher Nachbehandlungs-Qualität mit jeweils demselben Bohrgerät und unter den jeweils selben Bedingungen Kleinbohrkerne zieht, erhält man bei gut nachbehandelten und dichten Betonen überwiegend ungestörte Proben. Bohrkerne aus nicht beziehungsweise schlecht nachbehandeltem Beton zerfallen in der Regel in mehrere Einzelteile. Im Zustand der Karbonatisierung ist die Dichtheit der beiden Teilschichten der Passivierung nicht mehr gegeben, weil die Passivierungsschicht "löchrig" wurde. Die Korrosion des Stahls beginnt. Durch pH-bedingte Fehlstellen in der Passivierung ergibt sich eine Abhängigkeit des chloridinduzierten Korrosionsfortschrittes. Bei der Betrachtung der Bewehrungskorrosion infolge Chloridbelastung sind sowohl die Betondeckung und deren Dichtigkeit als auch die chemische Grenzflächensituation des Stahls zu berücksichtigen. Ist die Betondeckung bis zur Passivierungsschicht karbonatisiert, erhöht sich aufgrund der "undichten" Passivierungsschicht die Korrosionsgeschwindigkeit infolge Cl-Eindringens. Somit ist also die chloridinduzierte Korrosion sowohl vom Cl-Gehalt im Beton als auch vom pH-Wert des Betons abhängig; je höher der pH-Wert ist, desto geringer ist selbst bei hohen Chloridgehalten das Korrosionsrisiko. Ein ausreichend dichter Beton, der nicht stark austrocknen kann, verhindert den beschriebenen Korrosionsablauf zusätzlich, weil er mögliche Feucht/Trocken-Wechsel an der Passivierungsgrenzfläche reduziert. Bei diesem Vorgang wird aus dem neutralen trockenen Metallsalz bei der Befeuchtung eine Säure (Aquosäurenbildung) mit zusätzlichem Korrosionspotenzial. Zusätzlich wird die Bilden von Eisenoxyd aus dem Eisenchlorid durch die Sauerstoffdiffusionsreduzierung des dichten Betons sehr stark herabgesetzt beziehungsweise vollständig unterbunden.
Bei Fahrbahnoberflächen von Brücken und insbesondere von Stahlbrücken besteht gegenüber dem Straßenverlauf vor und hinter der Brücke die Gefahr einer vorzeitigen Glättebildung, da die relativ dünnen Fahrbahntafeln schnell auskühlen, während der dickere Belagsaufbau und der Untergrund auf der freien Strecke wie ein Wärmespeicher wirken. Insbesondere bei Brücken an ungünstigen Standorten, wie in der Nähe von Gewässern oder in Einschnitten, besteht vor allem im Spätherbst und am Beginn des Frühjahrs eine besondere Gefahr für die Verkehrsteilnehmer. Dieser besonderen Gefährdung des Verkehrs wird derzeit entweder durch Frühwarnsysteme mit vorsorglichem Streudienst oder durch Taumittelsprühanlagen begegnet. Eine weitere Möglichkeit die besondere Gefährdung aus dem Vereisungsverhalten der Brückenfahrbahn zu beseitigen, ist die, den Fahrbahnbelag der gefährdeten Brücken in den kritischen Zeiträumen zu beheizen. Dadurch wird die Salzbelastung für die Umwelt und auch für das Bauwerk reduziert. Im BASt"Bericht B87 "Vermeidung von Glättebildung auf Brücken durch die Nutzung von Geothermie" [2] wird diese umweltfreundliche Alternative ausführlich erläutert. Im Rahmen des hier beschriebenen Projekts wurden ergänzende Untersuchungen durchgeführt, um weiterführende Erkenntnisse über das Verbundverhalten und die Dauerhaftigkeit von Gussasphalt mit integrierten Rohrregistern zu gewinnen und daraus Empfehlungen für die Praxis abzuleiten. Zum einen handelt es sich um Abreissversuche an zwei D-Brückenmodulen mit Fahrbahntemperierung, zum anderen um Langzeitmessungen auf einer Straßenbrücke, bei der im Rahmen einer Erneuerung des Fahrbahnbelags probeweise Rohrregister eingebaut wurden. Es wurden verschiedene Systeme untersucht, die eine sichere Befestigung der Rohrregister auf der Unterlage gewährleisten und gleichzeitig den Einbau der Deckschicht möglichst wenig behindern. Desweiteren wurde die Ausrichtung der Rohre untersucht und die Dauerhaftigkeit überprüft. Großflächige Befestigungsgitter haben sich zur Fixierung von Rohrregistern für die in Deutschland üblichen Fahrbahnbeläge als ungeeignet erwiesen, da sie einen ausreichenden Schichtenverbund behindern. Für die Befestigung der Rohrregister sind daher wenig störende Befestigungsmittel wie z.B. halbseitige Rohrschellen zu empfehlen. Für quer zur Fahrtrichtung ausgeführte Rohrregistern konnte die grundsätzliche Praxistauglichkeit hinsichtlich des Einbaus und der Dauerhaftigkeit unter Verkehrsbelastung nachgewiesen werden. Als entsprechender Nachweis für längs zur Fahrtrichtung ausgeführte Rohrregister dient die erfolgreiche Pilotanwendung bei der Kanalbrücke Berkenthin. Im Hinblick auf die Dauerhaftigkeit konnten im Untersuchungszeitraum von 5 Jahren keine Einschränkungen festgestellt werden. Es wurden weder Risse noch Verformungen im Fahrbahnbelag indiziert. Für eine weitere Beurteilung des Langzeitverhaltens sollten auch zukünftig regelmäßige Begehungen und Messungen erfolgen.