Refine
Keywords
- Beton (5)
- Concrete (5)
- Prüfverfahren (5)
- Test method (5)
- Measurement (4)
- Messung (4)
- Method (4)
- Verfahren (4)
- Carbonate (3)
- Halide (3)
Institute
Erfahrungen mit Instandsetzungsmaßnahmen an Betonbauwerken aus der Vergangenheit haben deutlich gemacht, dass frühzeitiges Erkennen und Beseitigen von Betonschäden ganz wesentlich zur Kostenreduzierung beitragen können. Die auslösende Anregung zur Entwicklung des Bohrverfahrens resultierte daraus, dass es bisher kein baustellengerechtes und zerstörungsarmes Verfahren zur gemeinsamen Untersuchung der Karbonatisierungstiefe und des Chloridgehaltes gab. Ziel des Projektes war, ein solches Verfahren zu entwickeln, mit dessen Hilfe durch vergleichende Beurteilung der Bausubstanz eine Dringlichkeitsreihung möglich wird, mit der die verfügbaren Geldmittel für Erhaltungsmaßnahmen gezielter und wirkungsvoller einzusetzen sind.Das transportable und mobil einzusetzende Bohrverfahren erlaubt, unmittelbar aus dem beim Bohren entstehenden Bohrmehl Konzentrationsänderungen in der Bohrflüssigkeit zu bestimmen. Die Konzentrationsbestimmung kann direkt der Bohrtiefe zugeordnet werden. Derzeit können die für die oberflächennahe Betonsituation wichtigen Parameter pH-Wert und Chloridgehalt in den jeweiligen Tiefenhorizonten unmittelbar bestimmt werden. Anhand der unmittelbar nach der Messung ausgegebenen Messprotokolle kann kurzfristig entschieden werden, ob gegebenenfalls in kritischen Bereichen zur statistischen Untermauerung der Stichprobenerhebungen weitere Bohrungen erforderlich sind. Hierbei wird ein im Durchmesser etwa 18 mm großes und rund 50 mm tiefes Bohrloch erbohrt, so dass man von einem zerstörungsarmen Verfahren sprechen kann. Die Bestimmung der beiden Werte wird am Aufschluss des Bohrmehls aus dem gleichen Bohrloch vorgenommen. Die Bohreinrichtung besteht aus Elementen, die ein kontinuierliches und schlagfreies Bohren in beliebig gerichtete Betonbauteile ermöglichen. Dabei transportiert eine Messlösung das Bohrmehl in einem geschlossenen Kreislauf. Mit Hilfe spezieller Elektroden werden die Alkalität und der Chloridgehalt gemessen. Die Messwerte werden elektrisch umgesetzt, digitalisiert, gespeichert und mittels eines DV-Programmes so bearbeitet, dass eine Darstellung des pH-Wertes sowie des Chloridgehaltes jeweils in Abhängigkeit von der Bohrtiefe nach dem Beenden der Bohrung in Form entsprechender Messkurven erfolgen kann.
Die Erhaltung von Bauwerkssubstanz im Zuge von Verkehrswegen gewinnt zunehmend an Bedeutung. Die wirtschaftliche Optimierung der Planung und Durchführung von Erhaltungsmaßnahmen erfordert die frühzeitige Erkennung von Schäden, die Abschätzung von Schadensentwicklungen, die Vermeidung von Schadensvergrößerungen und die planmäßige und wirtschaftliche Vermeidung oder Beseitigung von Schäden. Der Hauptanteil der Finanzmittel wird für Arbeiten an Betonoberflächen verwendet. Um eine dauerhafte Instandsetzung zu erzielen, ist vor der Einleitung der notwendigen Maßnahmen eine Schadensanalyse durchzuführen, die die Kenntnis der Struktur des vorliegenden Betons voraussetzt. Die bisherigen Verfahren haben unter anderem den Nachteil, dass das Verpressharz nicht ausreichend tief in die Proben eindringt. Zielsetzung dieses Projekts ist die Entwicklung eines neuen Verpressverfahrens, mit dem die vorhandene Betonstruktur von Bauwerken bis in größere Tiefen zu erfassen und leichter und besser zu analysieren ist. Das Verpressverfahren mit fluoreszierendem Harz ermöglicht die Analyse an ungestörten Proben. Mit diesem Verfahren können nahezu alle weiteren porösen Materialien verpresst werden, also auch Naturstein für den Denkmalschutz und Asphaltbeton im Straßenbau. Das mit Harz verpresste Porensystem kann unter dem Mikroskop bei ultraviolettem Auflicht sichtbar gemacht und so Hohlräume, Poren und Risse abgebildet werden.
Ziel des Projektes war, ein baustellengerechtes und zerstörungsarmes Verfahren zur gemeinsamen Untersuchung der Karbonatisierungstiefe und des Chloridgehaltes zu entwickeln. Durch eine vergleichende Beurteilung der Bausubstanz ermöglicht dieses Verfahren eine Dringlichkeitsreihung, mit der die verfügbaren Geldmittel für Erhaltungsmaßnahmen gezielter und wirkungsvoller eingesetzt werden können. Das Bohrverfahren ist entwickelt worden, um zerstörungsarm und rasch an Betonbauwerken kontinuierlich unmittelbar in Abhängigkeit von der Bohrtiefe den jeweiligen Chloridgehalt und den pH-Wert messen zu können. Beide Bestimmungen werden am Aufschluss des Bohrmehls aus dem gleichen Bohrloch gewonnen. Aus dem beim Bohren entstehenden Bohrmehl werden mit Hilfe entsprechender Sensoren in einer sich im Kreislauf befindenden Messflüssigkeit die Konzentrationsänderungen gemessen. Die Konzentrationsbestimmung wird der Bohrtiefe des Bohrers zugeordnet. Hierbei wird zur Zeit ein im Durchmesser etwa 18 mm großes Bohrloch erbohrt, so dass man von einem zerstörungsarmen Verfahren sprechen kann.
Bei der Messung der Hydrophobierungsqualität mit dem elektrischen Messverfahren wird die elektrische Leitfähigkeit einer Kalkwasserlösung genutzt. Dem Verfahren liegt das physikalische Prinzip des Stromtransportes in elektrolytischer Lösung zugrunde. Die gesättigte Kalkwasserlösung hat sich als ein gut geeigneter und praktikabler Elektrolyt herausgestellt; er entspricht dem Betonelektrolyt, und seine elektrische Leitfähigkeit reicht aus. Wegen der geringen Wasserlöslichkeit des Kalkes und des hohen Angebotes an Restkalk in der gesättigten Lösung bleibt die Lösung während der gesamten Messung in ihrer elektrolytischen Wirkung konstant. Die Verträglichkeit der Kalkflüssigkeit mit den Nickel-Elektroden ist einwandfrei, das heißt die Grenzflächensituation zwischen Elektrolyt und Nickel-Elektrode ist gleichmäßig und gut. Grundsätzlich gilt für dieses Messverfahren, dass mit steigenden Messwerten die Summe der Fehlstellen in der Hydrophobierung zunimmt und damit deren Wirkung sinkt. In den ZTV-SIB 90 wurde seinerzeit 300 als Grenzwert festgelegt. Dieser Grenzwert darf von der Messkurve, die aus den Mittelwerten der über 90 Minuten ermittelten Einzelmesswerte besteht, nicht geschnitten werden. Der Grenzwert von 300 hatte insofern seine Berechtigung, als man aufgrund der Erfahrungen davon ausgehen musste, dass eine Hydrophobierung mit höheren Werten derart viele Fehlstellen besitzt, dass ihre Wirksamkeit längerfristig nicht mehr gegeben ist. Aufgrund langjähriger Erfahrungen mit der Messung der Hydrophobierungsqualität konnte die Messdauer auf 15 beziehungsweise 60 Minuten reduziert werden. Damit verbunden, konnte auch der Grenzwert herabgesetzt werden. Mit der Reduzierung der Messdauer wird das Messverfahren deutlich anwenderfreundlicher. Die entsprechenden Festlegungen werden in Teil 3, Abschnitt 4 der ZTV-ING übernommen. Nur wer künftig an den tieferen Zusammenhängen und an einer eingehenden Interpretation der Messkurven und somit Begründung für die jeweils gemessene Qualität interessiert ist, sollte die zeitaufwändigeren Messungen nach dem bisherigen Verfahren auf der Grundlage der ZTV-SIB durchführen. Ansonsten genügt zur Bestimmung der Hydrophobierungsqualität das Bewertungsverfahren gemäß ZTV-ING. Hierbei wird in der Regel deutlich kürzer gemessen und das Auftragen des Kurvenverlaufes der gemittelten Messwerte in Abhängigkeit von der Zeit entfällt. Das Bewertungsverfahren wurde dadurch spürbar vereinfacht. Es erfolgt nur noch das Ablesen der Werte nach 15 beziehungsweise 60 Minuten.
Bei der weiteren Erprobung des Bohrverfahrens an Brückenbauwerken traten praktische Schwierigkeiten an einzelnen Gerätekomponenten auf, so dass insbesondere die Bohrkrone hinsichtlich ihrer Schnittleistung, der Bohrantrieb und die Schneideigenschaften und das Verschleissverhalten der Diamantbohrkrone hinsichtlich ihrer Leistungsfähigkeit überarbeitet werden mussten. Zur Beurteilung der Betonqualität im oberflächennahen Bereich ist zusätzlich eine Kleinverpressanlage zum Verpressen der Kleinbohrkerne mit einem Spezialharz entwickelt worden. Die verpressten und ausgehärteten Proben werden in Scheiben geschnitten, und die Schnittflächen können dann unter dem Mikroskop beobachtet, angesprochen und fotografiert werden. Die Dichtheit der Betondeckung ist ein wesentliches Kriterium für die Korrosionswahrscheinlichkeit der Bewehrung. Auf der Grundlage des Zustandes der Bohrkerne lässt sich recht gut auf die Eigenschaften und Qualität des Betons hinsichtlich der Bindung des Zuschlages in der Zementsteinmatrix und der Festigkeit sowie auf die Intensität der Nachbehandlung schließen. Wenn man in Betonen unterschiedlicher Nachbehandlungs-Qualität mit jeweils demselben Bohrgerät und unter den jeweils selben Bedingungen Kleinbohrkerne zieht, erhält man bei gut nachbehandelten und dichten Betonen überwiegend ungestörte Proben. Bohrkerne aus nicht beziehungsweise schlecht nachbehandeltem Beton zerfallen in der Regel in mehrere Einzelteile. Im Zustand der Karbonatisierung ist die Dichtheit der beiden Teilschichten der Passivierung nicht mehr gegeben, weil die Passivierungsschicht "löchrig" wurde. Die Korrosion des Stahls beginnt. Durch pH-bedingte Fehlstellen in der Passivierung ergibt sich eine Abhängigkeit des chloridinduzierten Korrosionsfortschrittes. Bei der Betrachtung der Bewehrungskorrosion infolge Chloridbelastung sind sowohl die Betondeckung und deren Dichtigkeit als auch die chemische Grenzflächensituation des Stahls zu berücksichtigen. Ist die Betondeckung bis zur Passivierungsschicht karbonatisiert, erhöht sich aufgrund der "undichten" Passivierungsschicht die Korrosionsgeschwindigkeit infolge Cl-Eindringens. Somit ist also die chloridinduzierte Korrosion sowohl vom Cl-Gehalt im Beton als auch vom pH-Wert des Betons abhängig; je höher der pH-Wert ist, desto geringer ist selbst bei hohen Chloridgehalten das Korrosionsrisiko. Ein ausreichend dichter Beton, der nicht stark austrocknen kann, verhindert den beschriebenen Korrosionsablauf zusätzlich, weil er mögliche Feucht/Trocken-Wechsel an der Passivierungsgrenzfläche reduziert. Bei diesem Vorgang wird aus dem neutralen trockenen Metallsalz bei der Befeuchtung eine Säure (Aquosäurenbildung) mit zusätzlichem Korrosionspotenzial. Zusätzlich wird die Bilden von Eisenoxyd aus dem Eisenchlorid durch die Sauerstoffdiffusionsreduzierung des dichten Betons sehr stark herabgesetzt beziehungsweise vollständig unterbunden.