This study is aimed to investigate the correlations of impact conditions and dynamic responses with the injuries and injury severity of child pedestrians by accident reconstruction. For this purpose, the pedestrian accident cases were selected from Sweden and Germany with detailed information about injuries, accident cars, and accident environment. The selected accident cases were reconstructed using mathematical models of pedestrian and passenger car. The pedestrian models were generated based on the height, weight, and age of the pedestrian involved in accidents. The car models were built up based on the corresponding accident car. The impact speeds in simulations were defined based on the reported data. The calculated physical quantities were analyzed to find the correlation with injury outcomes registered in the accident database. The reconstruction approaches are discussed in terms of data collection, estimating vehicle impact speeds, pedestrian moving speeds and initial posture, secondary ground impact, validity of the mathematical models, as well as impact biomechanics.
Impact severity is a fundamental measure for all in-depth crash investigation projects. One methodology used in the UK is based on the US Calspan software package CRASH3. The UK- in-depth crash investigation studies routinely use AiDamage3 a software package which is based on an updated version of the original CRASH3 algorithm, including enhancements to the vehicle stiffness coefficients. Real world accident-damaged vehicles are measured and their crush is correlated with a library of stiffness coefficients. These measurements are then used, along with other parameters, to calculate the crash energy and equivalent changes of velocity of the vehicles (delta-v), which is a measure of the impact severity. UK in-depth accident studies routinely validate the crash severity methodologies applied as the vehicle fleet changes. This is achieved by analysing crash test data and using the appropriate residual crush damage and other inputs to AiDamage3 and checking the program- outputs with the known crash severity parameters. This procedure checks, at least in part, the default stiffness values in the data libraries and the reconstruction methods used.
In this study, the mean profile depth (MPD) that expresses roughness of road pavements was calculated using the road survey equipment vehicle and the calculated MPD was compared with the real number of traffic accidents. The analysis method used in this study was to classify the appropriate clustering in relation to traffic accidents using the K-means clustering and to compare this with the presence of traffic accidents via the MPDs to derive the result. K-means clustering was used in the analysis method and four clusters were found using the clustering analysis results. The center of each cluster was 0.627, 0.850, 1.118, and 1.237, respectively. The result of this study is expected to be utilized as foundational research in the traffic safety area.
Whiplash injuries are characterized by the high variability of its symptoms and by the subjectivity of its diagnosis, which sometimes leads to frauds perpetrated by victims of rear-end impacts. It is estimated that whiplash injuries cost annually about 10.000 million Euros in Europe. Therefore, the aim of this study was to investigate the influence of the dynamics of the accident in which the victim was involved in the probability of development of whiplash associated injuries. In the presented methodology, first an accident reconstruction is performed where the dynamics of the accident is determined. This is carried out using the software PC-Crash, police and insurance companies' data. Then biomechanical injuries criteria related with whiplash injuries are evaluated. For the evaluation of the probability of having whiplash injuries, the Neck Injury Criterion (NIC) of the victim and the mean acceleration of the vehicle were evaluated. Then, with medical reports, the results of the accident reconstruction are correlated with the reported injuries. Some examples are presented. The results obtained indicate that the study of the dynamics of the road accidents in which the victims were involved could be used as an auxiliary of the prognosis of whiplash injuries and is important for a precise diagnosis of this type of injuries.