4th International Conference on ESAR
Refine
Keywords
- Conference (39)
- Konferenz (39)
- Accident (22)
- Unfall (21)
- Injury (15)
- Statistik (15)
- Verletzung (15)
- Schweregrad (Unfall, Verletzung) (14)
- Severity (accid, injury) (14)
- Statistics (14)
Every second counts when human lives are at stake. The increasingly safe design of vehicles presents rescuers with a serious challenge. Faced with high-strength steels and body reinforcements, even the most powerful cutters reach their limits. Therefore, incident commanders require information on the technical features and components installed, directly in the vehicle. Several tests have shown that such information helps to save valuable minutes. Therefore, a standardised A4 "rescue sheet" containing information on the location of cabin reinforcements, the tank, the battery, airbags, gas generators, control units etc. " and indicating adequate cutting points must be used throughout Europe. Hopefully, in a few years, the new eCall emergency call system will be in place everywhere in Europe. The system will transmit the relevant vehicle-specific data directly to the rescuers on-site. Until then, we need a simple and effective solution that saves lives.
The role of a national motor vehicle crash causation study-style data set in rollover data analysis
(2010)
On 1 January 2005, The National Highway Traffic Safety Administration, an agency of the United States Department of Transportation, implemented a new data collection strategy designed to assess crash avoidance technologies and report associated behavioral inputs and outcomes. The original goal was a six-year program, however, during the shortened data collection period; it proved a valuable resource for understanding a precrash environment previously obscured by forensic case investigation. Another unintended consequence was an overlap with infrastructure, roadway geometry, and design with the occupant and vehicle outcomes, by virtue of well-defined attributes. External to the collected data, supplementary information was extrapolated, by using manuals published in the United States, by the American Association of State Highway Transportation Officials and selected State Departments of Transportation, in conjunction with the National Motor Vehicle Crash Causation Study (NMVCCS). This provided a backdrop to the infrastructure framework of the rollover problem within which the occupant and vehicle outcomes were studied. If a NMVCCS-style data collection were to be implemented elsewhere, then complementary manuals produced by federal transportation officials might be consulted producing similar relationships. The current study uses NMVCCS data to describe vehicles travelling through diverse design geometries and the outcome for occupants involved in crashes within that system. Codified and extrapolated data form the basis for assessing NMVCCS and its value to the transportation safety community, as the protocols are applicable universally. The benefit in continuing a NMVCCS-style study is noted, as the interaction of roadway infrastructure and occupant protection agencies might find paths to better work together in solving the complex rollover problem using a common data-driven approach.
The overall purpose of the ASSESS project is to develop a relevant and standardised set of test and assessment methods and associated tools for integrated vehicle safety systems, primarily focussing on currently available pre-crash sensing systems. The first stage of the project was to define casualty relevant accident scenarios so that the test scenarios will be developed based on accident scenarios which currently result in the greatest injury outcome, measured by a combination of casualty severity and casualty frequency. The first analysis stage was completed using data from a range of accident databases, including those which were nationally representative (STATS19, UK and STRADA, SE) and in-depth sources which provided more detailed parameters to characterise the accident scenarios (GIDAS, DE and OTS, UK). A common analysis method was developed in order to compare the data from these different sources, and while the data sets were not completely compatible, the majority of the data was aligned in such a way that allowed a useful comparison to be made. As the ASSESS project focuses on pre-crash sensing systems fitted to passenger cars, the data selected for the analysis was "injury accidents which involved at least one passenger car". The accident data analysis yielded the following ranked list of most relevant accident scenarios: Rank Accident scenario 1 Driving accident - single vehicle loss of control 2 Accidents in longitudinal traffic (same and opposite directions) 3 Accidents with turning vehicle(s) or crossing paths in junctions 4 Accidents involving pedestrians The ranked list highlights the relatively large role played by "accidents in longitudinal traffic", and "accidents with turning vehicle(s) or crossing paths in junctions" (the second and third most prevalent accident scenarios, respectively). The pre-crash systems addressed in ASSESS propose to yield beneficial safety outcomes with specific regard to these accident scenarios. This indicates that the ASSESS project is highly relevant to the current casualty crash problem. In the second stage of the analysis a selection of these accident scenarios were analysed further to define the accident parameters at a more detailed level .This paper describes the analysis approach and results from the first analysis stage.
This work aims at bringing evidence for mass incompatibility in frontal impact for cars built according to the UNECE R94 regulation. French national injury accidents database census for years 2005 to 2008 were used for the analysis. The heterogeneity of frontal self-protection among cars of different masses is investigated, as well as the partner protection parameter offered by these cars. The last part of the analysis deals with the estimation of the benefit, in terms of fatal and severe injuries avoided, if crashworthiness was harmonized for the whole fleet of vehicle. This calculation is done for France and is extended to all Europe.
Over the past two decades the popularity of consumer crash test programs, commonly referred to as New Car Assessment Programs (NCAP), has grown across the world. They are popular among government regulators as they afford a means of promoting safety innovations and levels of vehicle performance beyond those dictated by national standards. They also fulfill the demand for information regarding the safety ranking of vehicles among consumers contemplating the purchase of a new vehicle. There is no question that consumer crash test programs greatly influence vehicle design changes as well as accelerate the fitment of new safety features. The extent to which these changes can be expected to reduce serious and potentially fatal injuries will be influenced by how well the testing protocols and associated rating schemes correctly reflect the nature of the residual safety problem they seek to address. Drawing on data contained primarily in the US National Automotive Sampling System (NASS), the field relevance of current and proposed testing and rating protocols addressing frontal crash test protection is examined. Emphasis is placed on examining how accurately injury rates computed from the dummy responses measured in consumer crash tests correspond to actual injury rates observed in the field. Additional data from Canadian field investigations and US databases such as the National Motor Vehicle Crash Causation Survey (NMVCCS) are examined to see how well frontal airbag firing times, crush pulse durations and other determinants of injury are replicated in consumer testing protocols. This portion of the analysis draws on data obtained from Event Data Recorders (EDR) in both field collisions and staged tests of the same vehicle model. Vehicle rankings and overall frontal crash test ratings were found to be particularly sensitive to the choice of injury risk functions employed in the test. This was particularly true in the case of injury risk functions used to assess neck injury potential. Neck injury risk derived from Nij was found to show the least agreement with the field. Agreement between field chest injury rates and those derived from crash tests was improved considerably when chest injury risk functions for "older" occupants were employed. The paper concludes with a discussion of how different current testing protocols could be improved to enhance their field relevance.
In road traffic accidents, a car-seat and its occupant can be subjected to various crash pulses in the case of a rear impact. This study investigates the influence of crash pulse shape on seat-occupant response and evaluates the corresponding risk of whiplash injury. For this purpose, a rigorously validated seat-occupant system model is used to study different carseat designs and crash pulses. Two different car-seat concepts are also presented which can effectively mitigate whiplash injury for a wide range of crash severity. It is shown that for crash pulses of similar severity, the level of whiplash-risk depends strongly on the combined effects of seat design and crash pulse shape.
Event Data Recorder (EDR) is an additional function installed in airbag control module (ACM) to record vehicle and occupant information for a brief period of time before, during, and after a crash event. EDRs are now being installed in ACMs by several automakers in the USA and in Japan. The aim of this study is to understand the performance of EDRs for the improvement of accident reconstruction with more reliable information. In the first report of the study, data obtained from EDRs of seven vehicle types were evaluated using 2006-2007 J-NCAP (Japanese new car assessment program) full-lap frontal barrier crash tests and offset frontal deformable barrier crash tests data. For more practical standpoint, we conducted thirteen crash tests reconstructing typical real-world accidents such as single vehicle accidents with barriers or poles, car to car accidents and multi rear-end collisions focusing on Japanese typical accident types. Data obtained from EDRs are compared with data obtained from optical speed sensor, instrumented accelerometers and high speed video cameras. The velocities determined from pre-crash data of EDRs and the maximum change in velocity, delta-V, and delta-V time history data obtained from post-crash data of EDRs are analyzed. The results are as follows: - Pre-crash velocities of EDRs were very accurate and reliable. An average difference between the EDR recording values and reference speeds was 4.2% and a root mean square of the differences was 9.2%. Only two cases resulted large differences for the pre-crash velocity. Both of them were cases with braking prior to the collision. However, another test with braking resulted less difference. The braking condition may influence accuracy of pre-crash velocities. - Maximum delta-Vs obtained from the EDRs showed uncertainty of measurement in several cases in comparisons with the reliable delta-V data. The differences in maximum delta-V were more than 10% in five of twenty-five events data and more than 20% in two of twenty-five events data. An average of the all differences was about 4% and root mean square of the differences was about 11%. Especially large deformation at narrow area may influence accuracy of post-crash delta-V. - Multiple rear-end crash tests were reconstructed using EDRs data as case studies. Some EDRs recorded two events and a time gap between two events, so that these reconstruction case studies were very accurate and reliable. - If though only one of three vehicles in multiple rear end crash was equipped EDR, overview and velocities of all cars may be reconstructed using these limited EDR data. In this case study, leading car- EDR data and middle car- EDR data were valuable. However if only following car was equipped EDR, the reconstruction was not accurate
A total survey of road traffic accidents involving most severely injured, defined as sustaining a polytrauma or severe monotrauma (ISS > 15) or being killed, was conducted over 14 months in a large study region in Germany. Data on injuries, pre-clinical and clinical care, crash circumstances and vehicle damage were obtained both prospectively and retrospectively from trauma centers, dispatch centers, police and fire departments. 149 patients with a polytrauma and eight with a severe monotrauma were recorded altogether. 22 patients died in hospital. Another 76 victims had deceased at the accident scene. In 2008, 49 % of patients treated with life-threatening injuries were car or van occupants, 21 % motorcyclists, 18 % cyclists and 10 % pedestrians. Among fatalities at the scene, vehicle occupants constituted an even larger portion. The number of road users with life-threatening trauma in the region was extrapolated to the German situation. It suggests that 10 % among the "seriously injured" as defined in national accident statistics are surviving accident victims with a polytrauma or severe monotrauma.
Estimation of the benefits for the UK for potential options to modify UNECE Regulation No. 95
(2010)
The side impact problem in Europe remains substantial. UK data shows that between 22% and 26% of car occupant casualties are involved in a side impact, but this rises to between 29% and 38% for those who are fatally injured. This indicates the more injurious nature of side impacts compared with frontal impacts. The European Enhanced Vehicle safety Committee (EEVC) has performed work to address the side impact issue since 1979. As part of its continuing work, it has recently investigated potential options for regulatory changes to improve side impact protection in cars further. To support this work the UK undertook an analysis to estimate the benefit for potential options to modify UNECE Regulation 95. The analysis used the UK national STATS19 and detailed Co-operative Crash Injury Study (CCIS) accident databases. Of the potential options reviewed, it was found that the addition of a pole test offered the greatest benefit.
An analysis of NASS and FARS was conducted to determine crash conditions that involved injuries that are not currently being directly addressed by vehicle safety standards or by consumer information test protocols. Analysis of both field data and US NCAP tests were conducted to determine the relative safety provided by seating position and by vehicle model year. Opportunities for improvements were determined by crash categories with large populations of injuries that were not addressed by safety tests or smaller numbers that were increasing in frequency. Areas of opportunities include improved occupant restrain in rollovers, improved frontal protection for rear seat occupants and improved fire prevention in frontal and rollover crashes.
Since 2005, the motorcycle crash fatalities in the US exceeded 10% of the overall annual traffic fatalities. Consequently, it has become critical to gain in-depth understanding of the factors and characteristics contributing to motorcycle crashes. Unfortunately, there currently exists no database gathering the necessary information for an in-depth analysis of the US motorcycle crashes. So this study utilizes the NASS/CDS database (National Automotive Sampling System, Crashworthiness Data System) in order to gain insights into the patterns and factors leading to a NASS/CDS motorcycle crash, from 1997 to 2007. NASS/CDS samples about 5,000 passenger car tow-away crashes per year. Each case includes photographs and detailed data on crash and pre-crash characteristics, vehicle types, trajectories, types of impact, and other pertinent roadway and crash scene information, allowing an in-depth investigation of the crash mechanisms. However, the NASS/CDS sampling process specifically focuses on passenger car crashes, so the cases extracted only correspond to crashes in which a passenger vehicle was towed, and a motorcycle was somehow involved. Thus, a by-hand in-depth review of about 200 cases allowed retrieving 106 relevant crashes for this study, tending to represent the severe passenger vehicle(s) versus motorcycle(s) crashes on US roads. The findings lead to the conclusion that these crashes mostly result from the low conspicuity of the motorcycle, and from the inability of the car drivers to fully appreciate and anticipate the behavior of a motorcycle. Indeed, it has been shown that, first, the car drivers involved in these cases did not attempt any avoidance maneuver, second, they were largely of ages under 25, and finally, the majority of the crashes were in an intersection scenario. In addition, the two major scenarios unveiled were the car attempting a left turn from the opposite direction and the car attempting a left turn from the right. The paper mentions several solutions to enhance the motorcycle- conspicuity and to allow the car drivers to better anticipate its behavior, which seem to be key factors in the intersection-related crashes (and more generally in the passenger vehicle(s) versus motorcycle(s) crashes).
The share of high-tensile steel in car bodies has increased over the last years. While occupant safety has generally benefited from this measure, there is a potential risk that, as a result, rescue time may increase considerably. In more than 60% of all car occupant fatalities a technical rescue has been necessary. These are in particular those cases where occupants die immediately at the accident scene. Therefore, in these cases "rescue time" is a very sensitive parameter. In addition to the general analysis of the need of technical rescue and the actual rescue time depending on model years, the injury pattern of occupants requiring technical rescue will be analysed to provide advice for rescue teams. Furthermore, a detailed analysis of rescue measures for the most popular car models depending on the safety cell design is given.
This study that was funded by the Research Association for Automotive Technology (FAT) develops a method for the evaluation of the placement of tanks or batteries by using the deformation frequencies in real-world accidents. Therefore, the deformations of more than 20.000 passenger cars in the GIDAS database are analysed. For each vehicle a contour of deformation is calculated and the deformed areas of the vehicles are transferred in a rangy matrix of deformation. Thereby, the vehicle is divided into more than 190.000 cells. Afterwards, all single matrices of deformation are summarized for each cell which allows representative analyses of the deformation frequencies of accidents with passenger cars in Germany. On the basis of these deformation frequencies it is possible to determine least deformed areas of all passenger cars. Furthermore, intended placements of tanks or batteries can be estimated in an early stage of development. Therefore, all vehicles with deformations in the intended tank areas can be analysed individually. Considering numerous parameters out of the GIDAS database (e.g. collision speed, kind of accident, overlap, collision partner etc.) the occurring forces can be calculated or the deformation frequency can be estimated. Furthermore, it is possible to consider the influence of primary and secondary safety systems on the deformation behaviour. The analysis of "worst case accident events" is an additional application of the calculated matrix of deformation frequency.
The NHTSA-sponsored Crash Injury Research and Engineering Network (CIREN) has collected and analyzed crash, vehicle damage, and detailed injury data from over 4000 case occupants who were patients admitted to Level-I trauma centers following involvement in motor vehicle crashes. Since 2005, CIREN has used a methodology known as "BioTab" to analyze and document the causes of injuries resulting from passenger vehicle crashes. BioTab was developed to provide a complete evidenced-based method to describe and document injury causation from in-depth crash investigations with confidence levels assigned to the causes of injury based on the available evidence. This paper describes how the BioTab method is being used in CIREN to leverage the data collected from in-depth crash investigations, and particularly the detailed injury data available in CIREN, to develop evidence-based assessments of injury causation. CIREN case examples are provided to demonstrate the ability of the BioTab method to improve real-world crash/injury data assessment.
The paper presents a methodology for the benefit estimation of several secondary safety systems for pedestrians, using the exceptional data depth of GIDAS. A total of 667 frontal pedestrian accidents up to 40kph and more than 500 AIS2+ injuries have been considered. In addition to the severity, affected body region, exact impact point on the vehicle, and the causing part of every injury, the related Euro NCAP test zone was determined. One results of the study is a detailed impact distribution for AIS2+ injuries across the vehicle front. It can be stated, how often a test zone or vehicle part is hit by pedestrians in frontal accidents and which role the ground impact plays. Basing on that, different secondary safety measures can be evaluated by an injury shift method concerning their real world effectiveness. As an example, measures concerning the Euro NCAP pedestrian rating tests have been evaluated. It was analysed which Euro NCAP test zones are the most effective ones. In addition, real test results have been evaluated. Using the presented methodology, other secondary safety like the active bonnet (pop-up bonnet) or a pedestrian airbag measures can be evaluated.
Tree impacts are still one of the most important focal points of road deaths in Germany. For the year 2008, the latest figures in the national statistics show a share of 28% of road users killed in crashes with trees alongside a road amongst all crashes on rural roads (except the Autobahn). The official German statistics show the attribute "impact on a tree" since 1995. For this first reported year, the share of road users killed in such crashes was 30%. During the last 14 years, fatal accidents with road users killed on rural roads (except the Autobahn) after impacts on a tree declined by 60% from 1,737 (year 1995) to 696 (year 2008). But this is more or less in line with the general evolution of vehicle and traffic safety in Germany. For Germany as a whole the accident statistics do not show a reduction for "treer crashes" which is clearly more than the average for all accidents. But, as shown with the paper, there are different evolutions in the several German States. In public awareness the topic "tree impacts" is mostly associated with the situation in Germany after the reunification. At that time a lot of road users were killed on the avenues in the so called "new countries". The fact that "tree impacts" are still a big share within the figure of killed road users seems to be little-known. Using updated information coming from the official statistics and in-depth-studies, accident researchers can identify a big potential for further improvements of traffic safety on the associated district roads, state roads and federal highways. There is still a need to analyse more details of the accident occurrence with impacts on trees to generate new and updated findings on the current limits and potentials of measures to improve vehicle and traffic safety. To make further efforts in reducing the figures of victims of "tree impacts" the intensification of well-known conventional solutions " for example implementation of guard rails and reduction of speed - is an option. Measures related to vehicle safety technology especially in the field of primary (active) safety will have additional benefit within the physically imposed limits. With this background it can be seen that the subject "tree impacts" should be analysed with a holistic approach taking into account the entire system of driver, vehicle, road, the environment and a social consensus as well.
Looking at the total of sum of fatal car accidents the number of single-vehicle accidents and particularly run-offroad (ROR) accidents are most frequent. In Austria on the Autobahn ROR accidents amounts to almost 45% of all fatal accidents, i.e. nearly every second fatal accident is caused by ROR accidents and interaction with infrastructure. Approximately 43 people were killed on Autobahns in ROR accidents with passenger cars. One possibility of protection against impacts with infrastructure is the use of guardrails. However, the initial element identified as a turned down terminal could become a dangerous impact object. These turned down terminals may lead a vehicle to roll over or the car "takes-off" when impacting the turned down guardrail. In many cases it is reported that the vehicle is jumping into road side objects such as traffic sign poles or overpasses. On average, nine people are killed in such accidents every year in Austria.
Small overlap frontal crashes are defined by a damage pattern with most of the vehicle deformation concentrated outboard of the main longitudinal structures. These crashes are prominent among frontal crashes resulting in serious and fatal injuries, even among vehicles that perform well in regulatory and consumer information crash tests. One of the critical aspects of understanding these crashes is knowing the crash speeds that cause the types of damage associated with serious injuries. Laboratory crash tests were conducted using 12 vehicles in three small overlap test conditions: pole, vehicle-to-vehicle collinear, and vehicle-to-vehicle oblique (15-degree striking angle). Field reconstruction techniques were used to estimate the delta V for each vehicle, and these results were compared with actual delta V values based on vehicle accelerometer data. Estimated delta Vs were 50% lower than actual values. Velocity change estimates for small overlap frontal crashes in databases such as NASS-CDS significantly underestimate actual values.
Bone fracture patterns could be crucial in reconstructing the nature of loading, especially in the lower limb and upper limb kinematics in vehicle-pedestrian crashes. In addition, use of FE bone models can be a handy tool to predict vehicle impact velocity and the impact direction. The point of fracture initiation in bone loading has been predicted quite accurately earlier. A methodology that predicts bone crack initiation and its propagation pattern for the six known loading directions using a single material and failure model is presented.
Pedestrian and cyclist are the most vulnerable road users in traffic crashes. One important aspect of this study was the comparable analysis of the exact impact configuration and the resulting injury patterns of pedestrians and cyclists in view of epidemiology. The secondary aim was assessment of head injury risks and kinematics of adult pedestrian and cyclists in primary and secondary impacts and to correlate the injuries related to physical parameters like HIC value, 3ms linear acceleration, and discuss the technical parameter with injuries observed in real-world accidents based documented real accidents of GIDAS and explains the head injuries by simulated load and impact conditions based on PC-Crash and MADYMO. A subsample of n=402 pedestrians and n=940 bicyclists from GIDAS database, Germany was used for preselection, from which 22 pedestrian and 18 cyclist accidents were selected for reconstruction by initially using PC-Crash to calculate impact conditions, such as vehicle impact velocity, vehicle kinematic sequence and throw out distance. The impact conditions then were employed to identify the initial conditions in simulation of MADYMO reconstruction. The results show that cyclists always suffer lower injury outcomes for the same accident severity. Differences in HIC, head relative impact velocity, 3ms linear contiguous acceleration, maximum angular velocity and acceleration, contact force, throwing distance and head contact timing are shown. The differences of landing conditions in secondary impacts of pedestrians and cyclists are also identified. Injury risk curves were generated by logistic regression model for each predicting physical parameters.
The accident research of Hanover and (from 1999 on) Dresden registered 736 leg injuries (AIS ≥ 2) from 1983 to March 2007. 174 of these injuries (23.6 %) were fractures or dislocations of foot and ankle. 149 feet of 141 front seat car occupants in 140 cars were affected. Of these 117 were drivers, 24 were front seat passengers. The mean age of occupants was 38.5 -± 16.8 years. Ankle fractures were the most frequent injury (n = 82; 80 malleolar fractures, 2 pilon fractures). 34 fractures and dislocations affected the hindfoot (5 talus and 26 calcaneal fractures, 2 subtalar dislocations and 1 subtotal amputation) , 16 to midfoot (4 navicular fractures, 5 cuboid fractures, 3 fractures of cuneiformia, 2 dislocations of chopart joint, 1 subtotal amputation, and one severe decollement) and 39 the forefoot (metatarsal fractures). Open fractures were seldom seen (2 malleolar fractures, 1 metatarsal fracture). Both feet were injured in 10 cases. 33 occupants (23.4 %) were polytaumatic had a polytrauma, 17 of them died. 81 percent of the occupants were belted. The cars were divided in pre EuroNCAP (year of manufacture 1997 and older) and post EuroNCAP cars (year of manufacture 1998 and newer). Most of the foot injuries were seen in pre EuroNCAP cars. Most of the occupants sat in compact cars (40 drivers and 9 front seat passengers) and large family cars (27 drivers and 7 co-drivers). 49 of 140 accidents occurred on country roads, 26 on main roads and 13 on motorways. The crash direction was mostly frontal. Generally were found no differences of delta v- and EES-level between the injured foot regions, but divided into pre- and post-EuroNCAP cars there was a tendency to higher delta v- and EES-levels in newer cars. The frequency of foot injuries increased linearly with increasing delta v-level; but above delta v-level of 55 km/h the linear increase only was seen in pre-EuroNCAP cars, post-EuroNCAP cars showed no further increase of injuries. The footwell intrusion showed no difference between the injured foot regions but pre-EuroNCAP cars had a tendency to higher footwell intrusion. There were no differences in footwell intrusion between the car types. Only 29 of 174 fractures or dislocations of foot were seen in post-EuroNCAP cars, the predominate number of these injuries (n = 145) were noticed in pre-EuroNCAP cars. A lower probability of long-term impairment was found in post-EuroNCAP cars for equal delta v levels, using the AIS2008 associated Functional Capacity Index (FCI) for the foot region.
Unfortunately, there has been a high number of accident fatalities reported in the Czech Republic in recent years. There are many causes which have led to a growth in the number of road traffic accidents. Since 1990, traffic density has demonstrated an upward moving tendency, daily traffic-jams are on the increase in many cities and traffic capacity on roads and streets is not able to satisfy this increasing density. Moreover, many road users lack experience in terms of driving modern cars. The National Accident Study of the Czech Republic is based on the assumption that the year 2010 is considered as a pilot project with the testing operation of collecting and evaluating data from traffic accidents. From the beginning of 2011, a fully-functional structure of the Traffic Accident Research will be created and solid data generated. Based on this assumption, we hope to begin meaningful cooperation with foreign countries.
Recent findings from real-world accident data have shown that fatality risks for pedestrians are substantially lower than generally reported in the traffic safety literature. One of the keys to this insight has been the large and random sample of car-to-pedestrian crashes available in the German In-Depth Accident Study (GIDAS). Another key factor has been the proper use of weight factors in order to adjust for outcome-based sampling bias in the accident data. However, a third factor, a priori of unknown importance, has not yet been properly analysed. This is the influence of errors in impact speed estimation. In this study, we derived a statistical model of the impact speed errors for pedestrian accidents present in the GIDAS database. The error model was then applied to investigate the effect of the estimation error on the pedestrian fatality risk as a function of car impact speed. To this end, we applied a method known as the SIMulation-EXtrapolation (SIMEX) method. It was found that the risk curve is fairly tolerant to some amount of random measurement error, but that it does become flattened. It is therefore important that the accident investigations and reconstructions are of high quality to assure that systematic errors are minimised and that the random errors are under control.
A national initiative from the vehicle manufacturers, safety system suppliers, the road administration and universities in Sweden took off in 2007. The aim was to develop a national investigation network and a methodology focusing on all phases of a crash (pre-crash, in-crash and post-crash) as well as all parts of the road transport system (road user, vehicle and road environment). The initiative is formally run as a project with the acronym INTACT (Investigation Network and Accident Collection Techniques). It was a three year pilot with the aim to develop methodologies for an extended national crash investigation activity. During the first year the INTACT partners agreed on the aim for the investigation and methods for retrieving the data were developed. During the second and third year the methodology was tested in real-world investigations and further refinement was made. The paper describes the methodology developed to obtain high qualitative in-depth road crash data.
In India, heavy truck crashes on national highways account for a number of fatalities. But due to lack of in-depth crash data, detailed analysis is not possible to determine injury mechanisms, and to identify infrastructure, vehicle and human factors affecting these crashes. Over the past two years, researchers in India have established a crash investigation network, with the co-operation of the police and hospitals, to conduct crash investigations and in-depth crash data collection on national highways in the state of Tamil Nadu. This pioneering effort has resulted in the development of a heavy truck crash investigation methodology, the outcome of which is scientific and reliable crash data that has been able to provide good insight into truck crashes and their causes. This paper explains the need for truck crash investigations, the methodology, conclusions of the data analyzed up to date, and the need to focus on truck driver working conditions.