Refine
Keywords
- Bemessung (5)
- Berechnung (5)
- Calculation (5)
- Design (overall design) (5)
- Bearing capacity (4)
- Bridge (4)
- Brücke (4)
- Deutschland (4)
- Forschungsbericht (4)
- Germany (4)
Institute
Im Dezember 2015 wurde die A1-Änderung zum deutschen Nationalen Anhang von DIN EN 1992-1-1 veröffentlicht. Die Änderungen betreffen u. a. den Ansatz der wirksamen Betonzugfestigkeit bei der Ermittlung der Mindestbewehrung zur Begrenzung der Rissbreiten bei frühem Zwang. Der nachfolgende Beitrag erläutert die Hintergründe, warum eine entsprechende A1-Änderung zu DIN EN 1992-2/NA nicht erfolgt. Als Begründung für diese unterschiedliche Vorgehensweise werden die wesentlichen Unterschiede zwischen dem Hochbau und dem Brückenbau dargestellt.
Bei der Nachrechnung älterer Spannbetonbruecken mit Hohlkastenquerschnitt werden derzeit häufig grosse rechnerische Defizite beim Nachweis der schubfesten Verbindung zwischen gedrückter Bodenplatte und den Stegen im Bereich der Zwischenunterstützungen festgestellt. Neben erhöhten Beanspruchungen als Folge stetig wachsender Verkehrslastzahlen sind diese Defizite im Wesentlichen auf die mit Einführung der DIN-Fachberichte für den Brückenbau im Jahr 2003 geänderten Bemessungsvorschriften zurückzuführen. In Deutschland erfolgt die Ermittlung des Tragwiderstands im Grenzzustand der Tragfähigkeit (GTZ) seither auf Grundlage des Fachwerkmodells mit Rissreibung. In den vorgestellten Untersuchungen wird gezeigt, dass die Übertragung dieses für Stegquerschnitte entwickelten Modells auf Druckgurte mechanisch nicht begründet ist und zu sehr konservativen Ergebnissen führt. Auf Basis der Ergebnisse numerischer und analytischer Betrachtungen werden Bemessungsmodelle entwickelt, die das Tragverhalten vorwiegend gedrückter Gurtbereiche realitätsnäher erfassen. Die Kalibrierung und Verifikation der Finite Element-Modelle erfolgt in den durchgeführten Untersuchungen stets durch den Vergleich mit Ergebnissen gut dokumentierter Versuche aus der Literatur.
Bei der Nachrechnung bestehender Spannbetonbrücken auf Grundlage aktueller Normen zeigen sich i.A. erhebliche Defizite bei der erforderlichen Querkraftbewehrung. Dies ist zum einen auf höhere Verkehrslasten infolge des kontinuierlich gestiegenen Schwerverkehrs und zum anderen auf die Weiterentwicklung der Verfahren zum Nachweis der Querkrafttragfähigkeit zurückzuführen. Zudem erfolgte in Deutschland erst im Jahr 1966 die Festlegung einer erforderlichen Mindestquerkraftbewehrungsmenge. Die Nachweisverfahren für die Querkrafttragfähigkeit von Spannbetonbalken beruhen im Wesentlichen auf Versuchen an Einfeldträgern und sind bekanntlich sehr konservativ. Daher wurden am Lehrstuhl Betonbau der TU Dortmund in einem Großversuch experimentelle Untersuchungen zur Querkrafttragfähigkeit an einem vorgespannten Zweifeldträger durchgeführt, mit dem Ziel, Grundlagen für ein genaueres Nachweisverfahren zu schaffen. Von besonderem Interesse war das Tragverhalten im Bereich der Innenstütze. Die Gesamtlänge des Versuchsträgers betrug 12,0 m, die Stützweiten ergaben sich zu 5,75 m. Die Querkraftbewehrung des Balkens entsprach der rechnerisch erforderlichen Mindestquerkraftbewehrung nach DIN-Fachbericht 102. Lediglich in einem begrenzten Bereich unmittelbar neben der Innenstütze eines Feldes entsprach sie der doppelten Mindestquerkraftbewehrung. Da bisher kaum experimentelle Untersuchungen zum Querkrafttragverhalten an Innenstützen durchgeführt wurden, wurden die Verformungen in diesem Bereich während der Versuchsdurchführung zusätzlich mit einem optischen Messverfahren aufgezeichnet. Zur kontinuierlichen Erfassung des Tragverhaltens des gesamten Bauteils wurden zudem an der Querkraft- und Längsbewehrung des Versuchsträgers über 250 Dehnungsmessstreifen aufgebracht. Die Versuchsauswertung enthält eine umfangreiche Darstellung der Messwerte und zusätzlich Versuchsnachrechnungen unter Anwendung des Druckbogenmodells sowie mittels numerischer Simulationen.
Untersuchungen zur Querkraftbemessung von Spannbetonbalken mit girlandenförmiger Spanngliedführung
(2011)
Die Literaturrecherche zeigte, dass seit Beginn der Spannbetonbemessung der innere Hebelarm z auf der Grundlage von Annahmen bestimmt wird, die zum Teil stark variieren. Dies liegt vor allem daran, dass die Querkraftbemessung ursprünglich an Stahlbetonbauteilen hergeleitet wurde. Für Spannbetonbauteile wird in der Literatur ein Hebelarm von z=0,67d bis z=0,90d vorgeschlagen. Alle Quellen sind sich darüber einig, dass der Querkrafttraganteil der geneigten Spannglieder zu berücksichtigen ist. Des Weiteren sind Unterschiede in den aktuellen Normen zu finden. Während im DIN FB 102 im Allgemeinen der innere Hebelarm z aus dem Nachweis im GZT infolge Biegung mit oder ohne Längskraft im gleichen Querschnitt aus dem zugehörigen Moment verwendet werden soll, wird in der DIN 1045-1 nichts dergleichen erwähnt, sondern es darf z=0,9d angesetzt werden, sofern eine ausreichende Längsbewehrung aus Betonstahl vorhanden ist. Der EC 2 erlaubt hingegen den inneren Hebelarm z aus dem maximalen Biegemoment im betrachteten Bauteil zu berechnen. In einigen Literaturquellen, so auch im EC 2 wird außerdem gefordert, dass bei Bauteilen mit geneigten Spanngliedern ausreichend Betonstahllängsbewehrung im Zuggurt einzulegen ist. Die Auswertung der Stuttgarter Versuche zeigte, dass bei der Frage nach dem korrekten Ansatz für z zwei Bereiche zu unterscheiden sind. In dem Bereich, in dem die Schubrisse aus Biegeanrissen am Querschnittsrand entstehen ändert der Schubriss auf Höhe der Spannglieder seine Neigung. Die Änderung des Neigungswinkels ist abhängig von den Steifigkeitsverhältnissen der Zugbänder. Für diesen Bereich wird ein Ansatz vorgeschlagen, bei dem die Querschnittsflächen des Spannstahls Ap und Betonstahl As mit den für den Schub maßgebenden Spannungen gewichtet werden. Der Bereich, in dem die Spannglieder überdrückt sind und die flacher verlaufenden Schubrisse ohne Neigungswechsel kurz über die Spannglieder hinweg verlaufen, erstreckt sich horizontal vom Auflager bis zu ca. 1,5h. Hier wird das Stegfachwerk wesentlich entlastet durch den Druckbogen, der sich bei den hier untersuchten Trägern aufgrund der sehr schwachen schlaffen Zuggurtbewehrung zusammen mit der sich bis zum Auflager durchlaufenden Druckstrebe fast ausschließlich auf den Spannanker abstützt. Die Größe der gegebenenfalls erforderlichen schlaffen Zuggurtbewehrung für die Abdeckung der Zugkraft am Auflager muss noch untersucht werden.
Die für die Bemessung von Neubauten maßgebenden DIN-Fachberichte mit dem darin enthaltenen Sicherheitskonzept sind nicht geeignet, die tatsächliche Tragsicherheit bestehender älterer Spannbetonbrücken zu beurteilen. Die seinerzeit für die Bemessung und Konstruktion gültigen Normen wurden sowohl was die Einwirkungsseite als auch was die Widerstandsseite betrifft ständig weiterentwickelt und an neue hinzugewonnene Erkenntnisse angepasst. Dies hat zwangsläufig zur Folge, dass sich bei der Nachrechnung älterer Bestandsbrücken auf der Grundlage neuerer Normen die höhere Anforderungen beinhalten, häufig keine Nachweise mit normgemäßen Sicherheitsfaktoren führen lassen. Im Rahmen des FE-Vorhabens wurde objektbezogen an zwei Brücken untersucht, welche möglichen Tragreserven sich unter Einbeziehung des Entwurfs der Nachrechnungsrichtlinie identifizieren lassen. Die betrachteten Talbrücken Lützelbach (Hohlkasten) und Volkersbach (Plattenbalken) waren zuvor bereits normgemäßen Nachrechnungen unterzogen worden, bei denen sowohl im Grenzzustand der Gebrauchstauglichkeit, wie auch im Grenzzustand der Tragfähigkeit Defizite festgestellt wurden. Unter anderem wurden gegenüber dem für Neubauten konzipierten Sicherheitskonzept modifizierte Teilsicherheitsbeiwerte für die Besonderheiten bei der Nachrechnung des Bestands in Ansatz gebracht. Für die realitätsnahe Ermittlung der jeweiligen Tragwiderstände wurden alternative und genauere Verfahren auf ihre Eignung hin untersucht und in Ansatz gebracht. Die Tragwerke wurden in größerem Umfang als allgemein üblich auf Umlagerungsmöglichkeiten und Systemredundanzen hin untersucht. Insgesamt kann festgestellt werden, dass bei Anwendung eines für die Nachrechnung bestehender Bauwerke angepassten Sicherheitskonzepts und geeigneter alternativer Nachweisverfahren, Tragreserven bei den beiden betrachteten Brückenbauwerken identifiziert und genutzt werden können. Die bei normgemäßen Nachrechnungen festgestellten Defizite konnten in weiten Bereichen reduziert oder sogar ganz aufgehoben werden. Ein hoher Aufwand bei der Nachrechnung bestehender Brückenbauwerke scheint zielführend und gerechtfertigt, vor allem wenn sich dadurch der noch höhere Aufwand für Planung und Ausführung von Verstärkungsmaßnahmen vermeiden lässt.
Die gegenwärtigen DIN-Fachberichte basieren auf den ENV-Fassungen der Eurocodes unter Berücksichtigung der nationalen Regelungen. Bis zur Einführung der Europäischen Normen mit den zugehörigen Nationalen Anwendungsdokumenten werden in Deutschland Brücken auf der Grundlage der DIN-Fachberichte 101 "Einwirkungen auf Brücken", 102 "Betonbrücken", 103 "Stahlbrücken" und 104 "Verbundstahlbrücken" in den Ausgaben 03:2009 berechnet, bemessen und konstruiert. Aus der Anwendung der DIN-Fachberichte für den Brückenbau seit 2003 liegen überwiegend positive Erfahrungen vor. Mit ihrer Anwendung wurde ein hoher Qualitätsstandard sicher gestellt. Insgesamt soll mit der Einführung der EN-Normen das bisher in Deutschland erreichte hohe Qualitätsniveau im Brückenbau gehalten werden. Das Schwerverkehrsaufkommen auf den Straßen in Deutschland ist in den letzten Jahrzehnten überproportional angewachsen, und auch für die Zukunft werden weitere Steigerungen prognostiziert. Die Festlegungen aktueller Verkehrslastmodelle für Straßenbrücken beruhen auf Messungen aus der Mitte der 1980er Jahre. Im Vergleich dazu wurde durch neuere Verkehrserfassungen eine Verdopplung des Schwerverkehrsaufkommens festgestellt. Aus diesem Grund war es erforderlich, die Verkehrslasten auf Straßenbrücken hinsichtlich des aktuellen und des zukünftigen Schwerverkehrs zu überprüfen und anzupassen. Mit der geplanten Einführung der Eurocodes im Brückenbau werden im Vergleich zu den derzeitigen Regelwerken neben Änderungen bei den Straßenverkehrslasten auch Anpassungen zu den jeweiligen Eurocodes für die Bemessung von Brücken vorgeschlagen, um das gebotene Sicherheitsniveau einerseits sowie die Wirtschaftlichkeit andererseits zu wahren. Im Rahmen mehrerer Forschungsvorhaben wurden die Auswirkungen dieser Änderungen für Beton-, Stahl- und Stahlverbundbrücken untersucht.
Seit Beginn des Spannbetonbrückenbaus in Deutschland sind die Bemessungsvorschriften ständig weiterentwickelt und die Lastannahmen kontinuierlich dem gestiegenen Verkehrsaufkommen angepasst worden. Das hat zur Folge, dass bei der Nachrechnung von bestehenden Brückenbauwerken auf der Grundlage der aktuellen Normen häufig Überschreitungen festgestellt werden. In Fortführung des bereits abgeschlossenen Forschungsprojekts "Konzeption zur Nachrechnung bestehender Strassenbrücken" sollen im Rahmen dieses Projekts weitere Empfehlungen für die Bewertung bestehender Brückenbauwerke erarbeitet werden. Das vorliegende FE-Vorhaben behandelt die Themenfelder Sicherheitskonzept für bestehende Bauwerke, Ansatz der historischen Materialfestigkeiten, Beurteilung der Querkrafttragfähigkeit von vorgespannten Balken, Einfluss von nicht vorhandener Mindestbewehrung auf das Sicherheitsniveau sowie einer Literaturrecherche zu Wöhlerlinien älterer Spann- und Betonstähle. Die Untersuchungen beruhen auf der Auswertung vorhandener Literatur, beispielhaften Berechnungen bestehender Brücken sowie rechnerischer Simulationen existierender und gut dokumentierter Versuche. Es wurden verschiedene Ansätze zur Herleitung angepasster Teilsicherheitsbeiwerte für den Nachweis bestehender Bauwerke erläutert. Weiterhin konnten Empfehlungen für den Ansatz der charakteristischen Festigkeitseigenschaften von älterem Betonstahl, Spannstahl und Beton sowie der Ermüdungsfestigkeit damaliger Stähle gegeben werden. Es wurde gezeigt, dass die Momenten-Querkraft-Interaktion und die Tragwirkung eines Druckbogens bisher nicht ausreichend in der Ermittlung der aufnehmbaren Querkraft von Spannbetonträgern nach DIN-FB 102 berücksichtigt sind. Die erweiterte Abminderung der Zwangschnittgrössen gemäß Nachrechnungsrichtlinie darf auch bei fehlender Mindestlängsbewehrung angesetzt werden. Die Mindestquerkraftbewehrung ist für Spannbetonbrücken nach 1966 als ausreichend einzustufen. Die gewonnenen Erkenntnisse bestätigen erneut, dass ein hoher Aufwand bei der Nachrechnung bestehender Brückenbauwerke gerechtfertigt ist. Die Ergebnisse des FE-Vorhabens können bei der Erstellung und Fortschreibung der geplanten Nachrechnungsrichtlinie einfliessen.
Die Anforderungen an die Brückenbauwerke im Bestand haben sich in den vergangenen Jahren infolge steigender Verkehrszahlen vor allem im Bereich des schweren Güterverkehrs deutlich erhöht und werden laut aktuellen Studien in den nächsten Jahren weiter ansteigen. Weist man die betroffenen Brücken nach DIN-Fachbericht 102 nach, ergibt sich eine deutlich höhere erforderliche Querkraftbewehrung als die tatsächlich in den Stegen vorhandene. Dies alles geht einher mit der Tatsache, dass viele der Bestandsbauwerke in einem schlechten Zustand sind. Die Nachrechnungsrichtlinie lässt einige Modifikationen der Querkraft- und Torsionsnachweise zu, die teilweise in den alten Normengenerationen üblich waren. Andere Modifikationen, die im Rahmen von Gutachten angewendet werden, wurden in der Nachrechnungsrichtlinie nicht berücksichtigt, da sie noch nicht hinreichend verifiziert schienen. Außerdem gibt es in einigen Fällen keine einheitlichen Regelungen, sondern deren Auslegung liegt weitgehend im Ermessen des Anwenders, wie z. B. bei der Abminderung der Torsionssteifigkeit des Längssystems. Daher wurden in einem vorherigen Forschungsvorhaben kurzfristige Lösungen zur Modifikation bestehender Bemessungsansätze auf Grundlage bisher durchgeführter Forschungsvorhaben und gesammelter Erfahrungen bzw. Gutachten zur Nachrechnung von Bestandsbrücken erarbeitet. Zu anderen erweiterten Bemessungsmodellen für Querkraft- und Torsion von Spannbetonbrücken sowie speziellen Problemen des Brückenbaus konnten im Vorläuferprojekt dagegen keine abschließenden Festlegungen getroffen werden, da entsprechende theoretische und experimentelle Untersuchungen - vor allem an Durchlaufträgern - noch nicht im nötigen Umfang vorlagen. Ziel dieses Forschungsvorhabens ist die Herleitung und Verifikation verfeinerter Bemessungsansätze für Querkraft und Torsion, die auf ingenieurmäßigen Modellen mit mechanischer Grundlage beruhen. Dabei sollen die wesentlichen Fragestellungen zur Nachrechnung von Betonbrücken im Hinblick auf die Querkraft- und Torsionstragfähigkeit des Längssystems im Rahmen dieses Projektes abschließend geklärt werden. Auf der Basis von experimentellen und theoretischen Untersuchungen werden praxisgerechte Bemessungsansätze für Querkraft und Torsion hergeleitet werden, die eine genauere Vorhersage der Tragfähigkeit von Bestandsbauwerken ermöglichen.
Die nach dem derzeit für Ingenieurbauwerke der Verkehrsinfrastruktur in Deutschland gültigen Regelwerk DIN EN 1992-2 und DIN EN 1992-2/NA bemessenen erforderlichen Übergreifungslängen für Betonstahl sind im internationalen Vergleich, vor allem bei kleinen lichten Abständen zwischen den gestoßenen Stäben und großen Stabdurchmessern (Ø ≥ 16 mm), mit Abstand am größten. Dies gilt für die unmittelbar benachbarten Länder wie Dänemark, die Niederlande, die Schweiz aber auch beispielsweise die USA. Schäden, die auf die teilweise deutlich geringeren Übergreifungslängen in diesen Ländern zurückzuführen sind, sind nicht bekannt. Die deutschen Regelungen in DIN EN 1992-2/NA sollen nicht nur die Tragfähigkeit sondern auch die Gebrauchstauglichkeit abdecken. Dabei gehen die deutschen Festlegungen bezüglich der Betondeckung auf der sicheren Seite liegend konservativ von c = 1,0 Ø aus. Der günstige Einfluss einer größeren Betondeckung darf nach Eurocode 2 mit dem Faktor α2 berücksichtigt werden. Dieser Faktor ist nach dem deutschen Nationalen Anhang allerdings generell mit α2 = 1,0 anzusetzen, während er nach Eurocode 2 Werte bis 0,7 annehmen kann. Ein weiterer wesentlicher Unterschied ergibt sich in Abhängigkeit von Stoßanteil und Stabdurchmesser aus dem Stoßfaktor α6 bei kleinen lichten Abständen (a < 8 Ø) zwischen den gestoßenen Stäben. Daher stellt sich die Frage nach einer Überprüfung der im internationalen Vergleich sehr konservativen deutschen Regelungen bei Ingenieurbauwerken mit üblicherweise deutlich größeren Betondeckungen als c = 1,0 Ø, da sich alleine bei Anwendung des Faktors α2 um bis zu 30 % kürzere Übergreifungslängen ergeben können. Daraus können unter Umständen ausführungstechnisch und konstruktiv günstigere Bewehrungsanordnungen und teilweise deutliche Kostenreduzierungen infolge des geringeren Materialbedarfs resultieren was sich nicht zuletzt auch hinsichtlich der Schonung von Ressourcen vorteilhaft auswirkt. Am Lehrstuhl Betonbau der TU Dortmund wurden Klein- und Großkörperversuche durchgeführt um insbesondere die Faktoren α2 und α6 systematisch zu überprüfen. Das Gesamtziel des FE-Vorhabens besteht darin, die maßgeblichen Einflussparameter auf das Verhalten der Stöße unter Gebrauchslast und im Bruchzustand zu identifizieren und die Quantifizierung der erforderlichen Übergreifungslängen durch die derzeit gültigen nationalen und ausgewählte internationale Regelwerke zu analysieren.
Veränderungen der bestehenden Normen aufgrund des technischen Fortschritts und gewünschter Vereinheitlichung in Europa sind für den Neubau problemlos anwendbar. Für Bauwerke im Bestand führen solche Veränderungen aber häufig auf rechnerische Unzulänglichkeiten. Für die Bewertung der Zukunftsfähigkeit bestehender älterer Straßenbrücken ist eine Nachrechnung nach einheitlichen und den modernen Erkenntnissen angepassten Regeln eine wesentliche Voraussetzung. Daher wurde vom Bundesministerium für Verkehr und digitale Infrastruktur (BMVI) im Jahre 2011 die „Richtlinie zur Nachrechnung von Straßenbrücken im Bestand“ bekannt gegeben. Dieses Dokument wurde im Jahr 2015 ergänzt. Für zwei spezielle schon länger bekannte Problemstellungen älterer Spannbetonbrücken waren zuvor bereits Handlungsanweisungen eingeführt worden, nämlich „Handlungsanweisung zur Beurteilung der Dauerhaftigkeit vorgespannter Bewehrung von älteren Spannbetonüberbauten“ zur Beurteilung der Koppelfugen im Jahre 1998 und „Handlungsanweisung zur Überprüfung und Beurteilung von älteren Brückenbauwerken, die mit vergütetem spannungsrisskorrosionsgefährdetem Spannstahl erstellt wurden“ im Jahre 2011. Auf diese Dokumente wird in der Nachrechnungsrichtlinie verwiesen. Ziel des Projektes ist nun, die vorgenannten Handlungsanweisungen in eine Neufassung der Nachrechnungsrichtlinie zu integrieren und damit ein einheitliches Nachweis- und Sicherheitskonzept für eine geschlossene Bewertung bestehender Bauwerke zu schaffen. Dabei soll auf die aktuellen Normen verwiesen und die Bezeichnungen sowie Symbole formal an die heutigen Notationen angepasst werden.
Zunächst sind hierzu die aktuellen Einwirkungsmodelle (statische Verkehrslasten, Ermüdungslasten und Temperatur) nach heutigem Wissensstand zusammengestellt und mit den älteren Regelungen verglichen und kommentiert.
Für den Themenbereich „Spannungsrisskorrosionsgefährdung“ wird der Stand des Wissens dargelegt. Dabei wird auf die Bedeutung des Ankündigungsverhaltens durch Rissbildung hingewiesen und auch auf weitere pragmatische Ansätze in der Literatur verwiesen. Die Handlungsanweisung wird formal an die heutigen Notationen angepasst und textlich verbessert. Für eine ingenieurmäßige Bewertung wird die Einführung eines Mindestwertes für die verbleibende Restspannstahlfläche diskutiert und ein Vorschlag zur Einführung entsprechender Überlegungen sowohl für die Nachweise in Längs- als auch Querrichtung der Brückenüberbauten in die Nachrechnungsrichtlinie erarbeitet. Einige Möglichkeiten des Einsatzes von Messtechnik werden dargelegt. Anschließend werden an einigen Beispielen Vergleichsrechnungen für die Brückenlängsrichtung als auch für die Brückenquerrichtung durchgeführt und bewertet.
Für den Themenbereich „Ermüdung vorgespannter Bewehrung“ (Koppelfugen) wird ebenfalls die Ausgangslage und der Stand des Wissens zusammengestellt. Es wird deutlich gezeigt, dass nicht nur die ermüdungswirksamen, vertikalen Verkehrseinwirkungen, sondern auch das Grundmoment, welches neben Eigengewicht und Vorspannung auch die Auswirkung eines Temperaturgradienten zwischen der Ober- und Unterseite der Brücke enthält, einen wesentlichen Einfluss auf die ermüdungswirksamen Spannungen hat. Für die Nachweisstrategie mit dem Ermüdungslastmodell 3 des Eurocodes und schädigungsäquivalenter Schwingbreite wird ein Ansatz zur genaueren Berücksichtigung des Temperaturgradienten entwickelt. Anhand von Beispielrechnungen werden die Parameter identifiziert und alle in den Berechnungen zu berücksichtigenden Einflüssen bewertet. Die Beispiele zeigen, dass trotz unterschiedlichster Einwirkungs- und Sicherheitsformate vergleichbare Ergebnisse erhalten werden. Ein Abschnitt über den Einsatz von Messtechnik, insbesondere zur genaueren Festlegung des Grundmomentes, ergänzt die Betrachtungen. Zwei Praxisbeispiele werden ausführlich besprochen.
Die Erkenntnisse werden in Vorschlägen zur möglichen Modifizierung der Nachrechnungsrichtlinie zu diesem Bereich zusammengefasst und anschließend in einer ausführlichen Berechnung eines Beispiels noch einmal erläutert und die verschiedenen Einflüsse bewertet.
Für den Nachweis der Querkrafttragfähigkeit von Fahrbahnplatten ohne Querkraftbewehrung gibt es nach derzeitiger Bemessungspraxis keine einheitliche Vorgehensweise. Die bisherigen Erfahrungen zeigen, dass die Ergebnisse der Berechnungen sowohl bei der Ermittlung der Beanspruchungen als auch bei der Interpretation der Bemessungsverfahren nach DIN EN 1992-2 und zugehörigem Nationalen Anhang in einer erheblichen Bandbreite voneinander abweichen können, ohne dass immer eindeutig beurteilt werden kann was richtig oder falsch ist. Die Schnittgrößenermittlung und Bemessung entscheidet aber darüber, ob Querkraftbewehrung erforderlich ist oder nicht. Besonders wenn es dadurch im Zuge der Ausführungsplanung zu anderen Ergebnissen kommt als bei der Entwurfsplanung, führt dies auch zu vertraglichen Problemen für den Bauherrn. Ein weiteres Problemfeld kann die Nachrechnung bestehender Bauwerke darstellen, da die Fahrbahnplatten des Bestands in der Regel ohne Querkraftbewehrung ausgeführt wurden.
Vor diesem Hintergrund besteht aus Bauherrensicht die Notwendigkeit, eine einheitliche Vorgehensweise für die Berechnung und Bemessung von Fahrbahnplatten ohne Querkraftbewehrung bei Querkraftbeanspruchung auf Grundlage des aktuellen Stands von Wissenschaft und Technik zu entwickeln, um eine sichere und wirtschaftliche Bemessung zugleich mit eindeutigen Vorgaben zu gewährleisten.
Ziel des Forschungsvorhabens ist die Erarbeitung einer einheitlichen Vorgehensweise für den Nachweis von Fahrbahnplatten ohne Querkraftbewehrung. Dabei werden Vorschläge erarbeitet, die mechanisch begründet und für die Bemessungspraxis geeignet sind. Zudem werden entsprechende Textvorschläge zur Aufnahme in Bauherrenregelungen formuliert.
Das Problem umfasst sowohl die Ermittlung der Beanspruchungen als auch des Tragwiderstands bei Querkraft von Fahrbahnplatten ohne Querkraftbewehrung. Beide Seiten, die Beanspruchung vEd und der Tragwiderstand vRd, stehen dabei in einer gewissen Abhängigkeit zueinander (z. B. auflagernahe Einzellasten, Interaktion Biegung/Querkraft, Kalibrierung des Bemessungsmodells, Betontraganteil Vccd).