Refine
Keywords
- Corrosion (1)
- Korrosion (1)
- Nachrechnung (1)
- Road bridges (1)
- Rules and regulations (1)
- Straßenbrücken (1)
Veränderungen der bestehenden Normen aufgrund des technischen Fortschritts und gewünschter Vereinheitlichung in Europa sind für den Neubau problemlos anwendbar. Für Bauwerke im Bestand führen solche Veränderungen aber häufig auf rechnerische Unzulänglichkeiten. Für die Bewertung der Zukunftsfähigkeit bestehender älterer Straßenbrücken ist eine Nachrechnung nach einheitlichen und den modernen Erkenntnissen angepassten Regeln eine wesentliche Voraussetzung. Daher wurde vom Bundesministerium für Verkehr und digitale Infrastruktur (BMVI) im Jahre 2011 die „Richtlinie zur Nachrechnung von Straßenbrücken im Bestand“ bekannt gegeben. Dieses Dokument wurde im Jahr 2015 ergänzt. Für zwei spezielle schon länger bekannte Problemstellungen älterer Spannbetonbrücken waren zuvor bereits Handlungsanweisungen eingeführt worden, nämlich „Handlungsanweisung zur Beurteilung der Dauerhaftigkeit vorgespannter Bewehrung von älteren Spannbetonüberbauten“ zur Beurteilung der Koppelfugen im Jahre 1998 und „Handlungsanweisung zur Überprüfung und Beurteilung von älteren Brückenbauwerken, die mit vergütetem spannungsrisskorrosionsgefährdetem Spannstahl erstellt wurden“ im Jahre 2011. Auf diese Dokumente wird in der Nachrechnungsrichtlinie verwiesen. Ziel des Projektes ist nun, die vorgenannten Handlungsanweisungen in eine Neufassung der Nachrechnungsrichtlinie zu integrieren und damit ein einheitliches Nachweis- und Sicherheitskonzept für eine geschlossene Bewertung bestehender Bauwerke zu schaffen. Dabei soll auf die aktuellen Normen verwiesen und die Bezeichnungen sowie Symbole formal an die heutigen Notationen angepasst werden.
Zunächst sind hierzu die aktuellen Einwirkungsmodelle (statische Verkehrslasten, Ermüdungslasten und Temperatur) nach heutigem Wissensstand zusammengestellt und mit den älteren Regelungen verglichen und kommentiert.
Für den Themenbereich „Spannungsrisskorrosionsgefährdung“ wird der Stand des Wissens dargelegt. Dabei wird auf die Bedeutung des Ankündigungsverhaltens durch Rissbildung hingewiesen und auch auf weitere pragmatische Ansätze in der Literatur verwiesen. Die Handlungsanweisung wird formal an die heutigen Notationen angepasst und textlich verbessert. Für eine ingenieurmäßige Bewertung wird die Einführung eines Mindestwertes für die verbleibende Restspannstahlfläche diskutiert und ein Vorschlag zur Einführung entsprechender Überlegungen sowohl für die Nachweise in Längs- als auch Querrichtung der Brückenüberbauten in die Nachrechnungsrichtlinie erarbeitet. Einige Möglichkeiten des Einsatzes von Messtechnik werden dargelegt. Anschließend werden an einigen Beispielen Vergleichsrechnungen für die Brückenlängsrichtung als auch für die Brückenquerrichtung durchgeführt und bewertet.
Für den Themenbereich „Ermüdung vorgespannter Bewehrung“ (Koppelfugen) wird ebenfalls die Ausgangslage und der Stand des Wissens zusammengestellt. Es wird deutlich gezeigt, dass nicht nur die ermüdungswirksamen, vertikalen Verkehrseinwirkungen, sondern auch das Grundmoment, welches neben Eigengewicht und Vorspannung auch die Auswirkung eines Temperaturgradienten zwischen der Ober- und Unterseite der Brücke enthält, einen wesentlichen Einfluss auf die ermüdungswirksamen Spannungen hat. Für die Nachweisstrategie mit dem Ermüdungslastmodell 3 des Eurocodes und schädigungsäquivalenter Schwingbreite wird ein Ansatz zur genaueren Berücksichtigung des Temperaturgradienten entwickelt. Anhand von Beispielrechnungen werden die Parameter identifiziert und alle in den Berechnungen zu berücksichtigenden Einflüssen bewertet. Die Beispiele zeigen, dass trotz unterschiedlichster Einwirkungs- und Sicherheitsformate vergleichbare Ergebnisse erhalten werden. Ein Abschnitt über den Einsatz von Messtechnik, insbesondere zur genaueren Festlegung des Grundmomentes, ergänzt die Betrachtungen. Zwei Praxisbeispiele werden ausführlich besprochen.
Die Erkenntnisse werden in Vorschlägen zur möglichen Modifizierung der Nachrechnungsrichtlinie zu diesem Bereich zusammengefasst und anschließend in einer ausführlichen Berechnung eines Beispiels noch einmal erläutert und die verschiedenen Einflüsse bewertet.
Im Brückenbau ist aktuell der Einsatz von Betonen auf eine Festigkeit von ≤C50/60 beschränkt, da für die einwandfreie Herstellung von Bauteilen aus hochfestem Beton deutlich höhere Anforderungen an die Betonherstellung, die Verarbeitung und die Nachbehandlung zu stellen sind. Diese Beschränkung soll für Fertigteile von Brückenbauwerken, deren Herstellung unter werksmäßigen Bedingungen erfolgt, aufgehoben werden.
Ziel des Projektes war eine systematische Untersuchung zu den Auswirkungen der Planung von Brücken mit Fertigteilen aus hochfestem Beton. Es sollte insbesondere die Frage nach Grenzen dieser Bauweise zur Vermeidung einer dynamischen Anregung unter Verkehr oder zur Sicherstellung der Stabilität beantwortet, Einsparpotential bei Querschnittsabmessungen und Gewicht quantifiziert und ergänzende Regeln bzw. Entwurfsparameter für die Planung von Straßenbrücken erarbeitet werden.
Es wurden zunächst Typenentwürfe für ein einfeldriges Brückenbauwerk zur stützenfrei Überführung eines achtspurigen Autobahnquerschnitts (RQ 43,5) erarbeitet. Das Bauwerk wird als vorgespannte Fertigteilkonstruktion mit normalfester Ortbetonergänzung ausgeführt. Zur Quantifizierung des Einflusses des hochfesten Betons werden Entwürfe mit Fertigteilträgern aus hochfesten Beton und Normalbeton gegenübergestellt.
Grundlegendes Regelwerk für die Querschnittsausbildung ist der Entwurf der BEM-ING mit Angaben zu Mindestabmessungen und Empfehlungen zum maximalen Gewicht von Fertigteilträgern. So ist für Einfeldträger mit Spannweiten bis zu 45 m als Anhaltswert die Schlankheit des Gesamtquerschnitts auf einen Wert zwischen L/H=15 und L/H=25 und das Fertigteileigengewicht auf ca. 110 to zur Gewährleistung des Transportes und der Montage zu begrenzen.
Die Untersuchungen zeigten, dass der Einsatz von hochfesten Beton zu einer deutlichen Reduktion der Trägerhöhe und des -gewichts führt, so dass auch bei großen Spannweiten Konstruktionshöhen von L/25 machbar sind. Insbesondere im Hinblick von Ersatzneubauten mit vorgegebener Gradiente und einzuhaltendem Lichtraumprofil bietet der Einsatz von hochfesten Beton somit ganz neue Möglichkeiten.
Mit wachsender Biegeschlankheit der Spannbetonträger kommt der Kippsicherheit, der dynamischen Beanspruchbarkeit und der statischen Verformungen im Gebrauchszustand unter Verkehr eine immer größere Bedeutung zu. Auf Basis der Typenentwürfe wurden die Auswirkung des hochfesten Betons auf das Systemverhalten untersucht.
Im Endzustand ist ein Kippversagen der Fertigteilträger durch ein seitliches Ausweichen des Druckgurtes aufgrund der Ortbetondecke nicht maßgebend. Auch ein Knicken der Stege kann aufgrund der internen Vorspannung ausgeschlossen werden. Die Untersuchungen konzentrieren sich daher auf die Bewertung der Kippstabilität im Bauzustand. Es zeigte sich, dass der Zustand des aufgehängten Trägers während des Hebens maßgebend ist.
Als wesentliche Einflussfaktoren auf die Kippsicherheit wurde neben der Größe der Vorverformungen des Trägers infolge Herstell- und Montagetoleranzen, der Abstand der Hebepunkte vom Trägerende und die Druckgurtbreite v.a. der Vorspanngrad identifiziert.
So wird bei schlanken Trägern die geringere Biegesteifigkeit des Trägers durch einen höheren Vorspanngrad kompensiert, um die vertikalen Verformungen zu reduzieren und/oder eine Rissbildung im Endzustand unter Verkehr zu vermeiden. Im Bauzustand steigt jedoch die Gefahr der Rissbildung im Obergurt, was die Querbiegetragfähigkeit herabsetzt und damit die Kippsicherheit signifikant reduziert.
Die Wahl einer Vorspannung im nachträglichen Verbund oder eine Mischbauweise mit Spanngliedern im sofortigen Verbund ist in Hinblick der der Kippstabilität im Bauzustand daher zu empfehlen.
Insgesamt konnte bei allen Entwürfen eine ausreichende Kippsicherheit nachgewiesen werden. Eine weitere Erhöhung der Anhaltswerte der Schlankheit oder der Spannweite bei Einfeldbrücken gemäß BEM-ING wird auch in Hinblick einer Verformungsbegrenzung nicht empfohlen.
Für den Nachweis der Kippsicherheit der Bauzustände wird statt der Überprüfung eines Grenzkriteriums die Vewendung des Verfahrens nach Robert F. MAST (1993) empfohlen.
Die dynamischen Untersuchungen zeigten, dass eine starke dynamische Vergrößerung der Verkehrslasten nur stattfindet, wenn sich der für die Bemessung maßgebliche Lastfall aus wenigen schweren Lastwagen zusammensetzt, welche mit bedeutender Geschwindigkeit fahren. So ist bei Brücken mit großer Spannweite die Belastung durch ein Einzelfahrzeug für die Brückenträger unerheblich, auch wenn es zu massiver dynamischer Vergrößerung kommt. Dies spiegelt sich auch im mit wachsender Spannweite sinkenden Schwingbeiwert gemäß DIN1072 wider, der bei Spannweiten ≥ 50 m den Wert 1,0 annimmt.
Es konnte gezeigt werden, dass das normative Lastmodell LM1 gemäß EC1 die dynamische Vergrößerung aus Verkehr ausreichend abdeckt und auf eine dynamische Untersuchung von Brücken mit Trägern gemäß dem aktuellen Entwurf der BEM-ING verzichtet werden kann.