Refine
Document Type
- Conference Proceeding (11)
- Book (1)
Keywords
- Conference (11)
- Konferenz (11)
- Accident (9)
- Unfall (9)
- Austria (5)
- Deutschland (5)
- Fahrzeug (5)
- Germany (5)
- Vehicle (5)
- Österreich (5)
Institute
- Sonstige (11)
- Abteilung Straßenverkehrstechnik (1)
Annually within the European Union, there are over 50,000 road accident fatalities and 2 million other casualties, of which the majority are either the occupants of cars or other road users in collision with a car. The European Commission now has competency for vehicle-based injury countermeasures through the Whole Vehicle Type Approval system. As a result, the Commission has recognised that casualty reduction strategies must be based on a full understanding of the real-world need under European conditions and that the effectiveness of vehicle countermeasures must be properly evaluated. The PENDANT study commenced in January 2003 in order to explore the possibility of developing a co-ordinated set of targeted, in-depth crash data resources to support European Union vehicle and road safety policy. Three main work activity areas (Work Packages) commenced to provide these resources. This paper describes some of the outcomes of Work Package 2 (WP2, In-depth Crash Investigations and Data Analysis). In WP2, some 1,100 investigations of crashes involving injured car occupants were conducted in eight EU countries to a common protocol based on that developed in the STAIRS programme. This paper describes the purposes, methodology and results of WP2. It is expected that the results will be used as a co-ordinated system to inform European vehicle safety policy in a systematic, integrated manner. Furthermore, the results of the data analyses will be exploited further to provide new directions to develop injury countermeasures and regulations.
The proportion of older road users is increasing because of demographic change (in the group 65+ from current 18% to about 24% by 2030). The mobility needs of people 65+ often differ from those of younger people. Seniors (65+) are already more involved in fatal accidents than younger road users. According to the age development, the senior share of road deaths in the EU of today is increasing nearly one-fifth to one-third. From the in-depth analysis of accidents generic simulation models were developed. Attention has been paid both to psycho-physical characteristics as well as on the social and physical environment and their specifics in conjunction with seniors. By simulating the defined scenarios and varying the defined relevant parameters, accident influencing factors were examined as a basis for avoidance. In addition, the parameters were varied to show the influence from the vehicle, the pedestrian and the infrastructure to avoid the accident or to characterize the conditions for which the accident is inevitable.
Females sustain Cervical Spine Distortion injury (CSD) more often than males. Most work dealing with the biomechanics background (e.g. injury mechanism/criteria) as well as the application in seat design/testing, focuses on the occupant model of an average male. Therefore the EU-Project ADSEAT (Adaptive Seat to Reduce Neck Injuries for Female and Male Occupants) is aimed at adding a female model for gender balanced research of CSD and improving seat design. An extensive literature review, searching for risk factors and injury criteria for males and females, was accompanied by the evaluation of different databases containing CSD cases. The database evaluations suggests that an anthropometry quite close to the 50%ile female anthropometry as known from crash test dummy design is appropriate. The results presented here form the basis for the future development of a computational female model and the improvement of seat design for better protection of both males and females in the frame of the ADSEAT-Project.
Causation of traffic accidents with children from the perspective of all involved participants
(2017)
In the year 2014 about 2,800 children between zero and 14 years got injured due to traffic accidents in Austria. More than 50% were taking part in traffic as active road users like cyclists or pedestrians. Within this study 46 real world traffic accidents between vehicles and children as pedestrians were analysed. In 39 cases, car drivers hit the crossing children. In the other cases, the collision opponents were busses, trucks or motorcycles. Most of the children got hit while crossing a road at urban sites. By analysing the traffic accidents from the perspectives of all involved participants, vehicle drivers and injured children, it is possible to identify factors for each participant, which led to the accident and factors that contributed the accident. The main task is to find patterns in the behaviour of crash victims (children and driver) before the collision. One important fact is that in more than 50% of the analysed cases sight obstructions were an important contributing factor for both, the driver and the child. From drivers view situations in which the child moved unexpected into the driven road lane were often found. For the injured child, factors like: no attention to the road traffic or no sufficient traffic observation were found to be relevant. Further it- possible to sensitise children and adults to possible source of critical traffic situations according to the findings of this study.
In a first step, we have examined approximately 23 000 single vehicle accidents within the Austrian National Statistics database. In a second step, we considered 15% of all fatal "running off the road" accidents that occurred in Austria in 2003. As a result, two accident categories were specified; "leaving the road without preceding manoeuvre" and "leaving the road with preceding manoeuvre". These two categories can be basically characterised by the vehicle- heading angle and its velocity angle. In this report, we further suggest theoretical approaches for the dimensioning of a safety zone, an area adjacent to the road free of fixed objects or dangerous slopes. We also show the link between the two accident categories mentioned above and the real world accidents analysed in detail. These observations also form the basis for the required length for safety devices. Finally, we summarise accident avoidance strategies.
The advent of active safety systems calls for the development of appropriate testing methods. These methods aim to assess the effectivity of active safety systems based on criteria such as their capability to avoid accidents or lower impact speeds and thus mitigate the injury severity. For prospective effectivity studies, simulation becomes an important tool that needs valid models not only to simulate driving dynamics and safety systems, but also to resolve the collision mechanics. This paper presents an impact model which is based on solving momentum conservation equations and uses it in an effectivity study of a generic collision mitigation system in reconstructed real accidents at junctions. The model assumes an infinitely short crash duration and computes output parameters such as post-crash velocities, delta-v, force directions, etc. and is applicable for all impact collision configurations such as oblique, excentric collisions. Requiring only very little computational effort, the model is especially useful for effectivity studies where large numbers of simulations are necessary. Validation of the model is done by comparison with results from the widely used reconstruction software PC-Crash. Vehicles involved in the accidents are virtually equipped with a collision mitigation system for junctions using the software X-RATE, and the simulations (referred to as system simulations) are started sufficiently early before the collision occurred. In order to assess the effectivity, the real accident (referred to as baseline) is compared with the system simulations by computing the reduction of the impact speeds and delta-v.
In recent years the boundaries between active and passive safety blurred more and more. Passive safety in the traditional term includes all safety aspects to prevent occupants to be injured or at least injury severity should be reduced. Passive Safety starts with the collision (first vehicle contact) and ends with rescue (open vehicle doors). Within this phase the occupant has to be protected by the passenger compartment whereby no intrusion should occur. Active safety on the other side was developed to interact prior to the collision whereby the goal is to prevent accidents. The extensive interaction between active and passive safety led to the terminologies "Primary" and "Secondary" safety whereas the expression Integrated Safety Concept was generated. Within this study the most well documented single vehicle accidents with cars not equipped with ESP were identified from the PENDANT database and reconstructed. Additional cases were found in the database ZEDATU of TU Graz. In comparison each case was simulated with the assumption that the cars were equipped with ESP. The differences regarding accident avoidance or crash severity as well as reduction of injury risk were analysed.
This work describes the results of the experimental activity, illustrating the driving behavior observed in different conditions, relating them to the different methods of ADAS intervention and comparing the driver behavior without ADAS. In the present study, driver behavior was studied in road accidents involving elderly pedestrians, with different ADAS HMIs, as a base to develop a driver model in near missing pedestrian accidents. A literature research was conducted with the aim of finding out the main influencing factors, including environment, boundary conditions, configuration of impact, pedestrian and driver information, when pedestrian fatalities occur and an analysis of frequent road accidents was conducted to get more detailed information about the driver- behavior. In order to obtain more detailed information about pedestrian accidents, real road accidents were reconstructed with multibody simulations on PC-Crash and, by the comparison between literature findings and reconstructions, a generic accident scenario was defined. The generic accident scenario was implemented on the full scale dynamic driving simulator in use at the Laboratory for Safety and Traffic Accident Analysis (LaSIS, University of Florence, Italy) in order to analyse the driving behaviors of volunteers, also considering the influence of ADAS devices. Forty-five young volunteers were enrolled for this study, resulting in forty valid tests on different testing scenarios. Two different scenarios consisted in driving with or without ADAS in the vehicle. Different kinds of ADAS, acoustic and optical, with different time of intervention were tested in order to study the different reactions of the driver. The tests showed some interesting differences between driver's behavior when approaching the critical situation. Drivers with ADAS reacted earlier, but more slowly, depending also on the type of alarm, and often with double reaction when braking. In fact, the results of the activity showed that with ADAS intervention the time to collision (TTC) increases, but the reaction time and braking modality change: a) there is a sort of "latency" time between the accelerator pedal release and the brake pressure; b) the brake pressure is initially less intense. So the driver only partially takes advance from the TTC increase. These differences were valued not only qualitatively, but quantitatively as well. This work revealed to be useful to improve the knowledge of drivers" behavior, in order to realize a driver model that can be implemented to help attaining and assessing higher levels of automation through new technology.
Looking at the total of sum of fatal car accidents the number of single-vehicle accidents and particularly run-offroad (ROR) accidents are most frequent. In Austria on the Autobahn ROR accidents amounts to almost 45% of all fatal accidents, i.e. nearly every second fatal accident is caused by ROR accidents and interaction with infrastructure. Approximately 43 people were killed on Autobahns in ROR accidents with passenger cars. One possibility of protection against impacts with infrastructure is the use of guardrails. However, the initial element identified as a turned down terminal could become a dangerous impact object. These turned down terminals may lead a vehicle to roll over or the car "takes-off" when impacting the turned down guardrail. In many cases it is reported that the vehicle is jumping into road side objects such as traffic sign poles or overpasses. On average, nine people are killed in such accidents every year in Austria.
Assessment of the effectiveness of Intersection Assistance Systems at urban and rural accident sites
(2015)
An Intersection Collision Avoidance System is a promising safety system for accident avoidance or injury mitigation at junctions. However, there is still a lack of evidence of the effectiveness, due to the missing real accident data concerning Advanced Driver Assistance Systems. The objective of this study is the assessment of the effectiveness of an Intersection Collision Avoidance System based on real accidents. The method used is called virtual pre-crash simulation. Accidents at junctions were reconstructed by using the numerical simulation software PC-Crashâ„¢. This first simulation is called the baseline simulation. In a second step the vehicles of these accidents were equipped with an Intersection Collision Avoidance System and simulated again. The second simulation is called the system simulation. In the system simulation two different sensors and four different intervention strategies were used, based on a time-to-collision approach. The effectiveness of Intersection Collision Avoidance System has been evaluated by using an assessment function. On average 9% of the reviewed junction accidents could have been avoided within the system simulations. The other simulation results clearly showed a change in the principal direction of force, delta-v and reduction of the injury severity.
Due to recent years accident avoidance and crashworthiness on Austrian roads were mostly developed on national statistics and on-scene investigation respectively. Identification and elimination of black spots were main targets. In fact many fatal accidents do not occur on such black spots and black-spot investigation has reached a limit. New methods are required and therefore the Austrian Road Safety Programme was introduced by the Austrian Ministry of Transport, Innovation and Technology. The primary objective is the reduction of fatalities and severe injuries. Graz University of Technology initiated the project ZEDATU (Zentrale Datenbank tödlicher Unfälle) with the goal to identify similarities in different accident configurations. A matrix was established which categorizes risk and key factors of participating parties. Based on this information countermeasures were worked out.
Bei einem Anprall gegen ein ortsfestes Hindernis ist mit tiefen Intrusionen in den Fahrzeuginnenraum zu rechnen, die zu schwersten Verletzungen führen können. Untersuchungen haben gezeigt, dass Kollisionen mit künstlichen Hindernissen an der Fahrbahnseite, wie Gabelständer, Trimasten, zu 80 % frontal angeprallt werden.
Ziel des Forschungsprojektes war die Bewertung der passiven Sicherheit von Gabelständern und Trimasten, um anhand der Ergebnisse Empfehlungen für die Notwendigkeit einer Absicherung durch Schutzeinrichtungen zu erarbeiten.
Als Methode wurde ein Mix aus Realversuchen und Finiten Elemente Simulationen gewählt. Ausgangspunkt bildeten je zwei Validierungsversuche für den Gabelständer und Trimast. Aufbauend auf diesen Versuchen wurden Simulationsmodelle validiert. Die Simulationsmodelle wurden modifiziert und die Insassensicherheit nach Kriterien der EN 12767 bewertet. Wesentliche Kriterien waren der Index für die Schwere der Beschleunigung (ASI: Acceleration Severity Index) und die theoretische Anprallgeschwindigkeit des Kopfes (THIV: Theoretical Head Impact Velocity).
Der wesentliche Faktor zum Erreichen einer passiven Sicherheit wurde im Abreißen der Gurtrohre beim Anprall festgestellt. Ein Abreißen der Gurtrohre führt zum Unterschreiten der Grenzwerte für den ASI und THIV gemäß EN 12767. Von Bedeutung sind in diesem Zusammenhang der Gurtrohrdurchmesser und die Ausführung der Fußplatten. Fixierte Fußplatten begünstigen ein Abreißen der Gurtrohre und ein Unterschreiten der Grenzwerte für den ASI und insbesondere für den THIV.
Die Masthöhe, die Spreizung und das Schild selbst haben nur einen geringen Einfluss auf die beiden Kennwerte. Unterschiedliche Diagonalrohranordnungen, Schwächung der Gurtrohre oder Reduktion des Schweißnahtumfangs wirken sich positiv auf das Abreißen der Gurtrohre aus und führen zum Unterschreiten der Grenzwerte des ASI und THIV