Refine
Keywords
- Conference (6)
- Konferenz (6)
- Accident (4)
- Deutschland (4)
- Germany (4)
- Unfall (4)
- Simulation (3)
- Accident prevention (2)
- Austria (2)
- Fahrzeug (2)
Causation of traffic accidents with children from the perspective of all involved participants
(2017)
In the year 2014 about 2,800 children between zero and 14 years got injured due to traffic accidents in Austria. More than 50% were taking part in traffic as active road users like cyclists or pedestrians. Within this study 46 real world traffic accidents between vehicles and children as pedestrians were analysed. In 39 cases, car drivers hit the crossing children. In the other cases, the collision opponents were busses, trucks or motorcycles. Most of the children got hit while crossing a road at urban sites. By analysing the traffic accidents from the perspectives of all involved participants, vehicle drivers and injured children, it is possible to identify factors for each participant, which led to the accident and factors that contributed the accident. The main task is to find patterns in the behaviour of crash victims (children and driver) before the collision. One important fact is that in more than 50% of the analysed cases sight obstructions were an important contributing factor for both, the driver and the child. From drivers view situations in which the child moved unexpected into the driven road lane were often found. For the injured child, factors like: no attention to the road traffic or no sufficient traffic observation were found to be relevant. Further it- possible to sensitise children and adults to possible source of critical traffic situations according to the findings of this study.
The current Brussels EU Regulation No. 1235/2011, valid from May 30, 2012, has introduced an European Tyre Label with wet grip index G classes from A to G for passenger car tyres C1, light commercial vehicles tyres C2 and heavy truck- and bus tyres C3. Every wet grip class for each vehicle category has a defined band of numerical values for the wet grip index G. The legislated wet grip values G in this EU- Regulation are very low. The measured braking distances and corresponding impact speeds of the test vehicles are showing very critical results. Regulation No. 1235/2011 of the European Parliament and the Council for Type Approval of Vehicles (EU) should be changed in such a way, that for C1-tyres (normal passenger cars tyres) the minimum wet grip index G is 1.25. All C2-tyres (light commercial vehicles tyres) should at least meet a minimum wet grip index of G = 1.1. All C3-tyres (heavy trucks and buses tyres) should at least meet a minimum wet grip index of G = 0.95. Due to the missing lower limits for G in the wet grip class F for C1, C2 and C3 tyres according to Commission Regulation (EU) No. 1235/2011, officially valid from 30 May 2012, a tyre-to-road coefficient of adhesion in the extreme of 0 (zero) is legally permitted. This is an apparent flaw in above cited EU Regulation, which causes a potential danger to the road traffic safety for all motor vehicles in Europe with such tyres. The wet grip class F has to be removed urgently from said EURegulation, since a direct liability of the responsible EU-Commission can not be excluded.
In recent years the boundaries between active and passive safety blurred more and more. Passive safety in the traditional term includes all safety aspects to prevent occupants to be injured or at least injury severity should be reduced. Passive Safety starts with the collision (first vehicle contact) and ends with rescue (open vehicle doors). Within this phase the occupant has to be protected by the passenger compartment whereby no intrusion should occur. Active safety on the other side was developed to interact prior to the collision whereby the goal is to prevent accidents. The extensive interaction between active and passive safety led to the terminologies "Primary" and "Secondary" safety whereas the expression Integrated Safety Concept was generated. Within this study the most well documented single vehicle accidents with cars not equipped with ESP were identified from the PENDANT database and reconstructed. Additional cases were found in the database ZEDATU of TU Graz. In comparison each case was simulated with the assumption that the cars were equipped with ESP. The differences regarding accident avoidance or crash severity as well as reduction of injury risk were analysed.
This work describes the results of the experimental activity, illustrating the driving behavior observed in different conditions, relating them to the different methods of ADAS intervention and comparing the driver behavior without ADAS. In the present study, driver behavior was studied in road accidents involving elderly pedestrians, with different ADAS HMIs, as a base to develop a driver model in near missing pedestrian accidents. A literature research was conducted with the aim of finding out the main influencing factors, including environment, boundary conditions, configuration of impact, pedestrian and driver information, when pedestrian fatalities occur and an analysis of frequent road accidents was conducted to get more detailed information about the driver- behavior. In order to obtain more detailed information about pedestrian accidents, real road accidents were reconstructed with multibody simulations on PC-Crash and, by the comparison between literature findings and reconstructions, a generic accident scenario was defined. The generic accident scenario was implemented on the full scale dynamic driving simulator in use at the Laboratory for Safety and Traffic Accident Analysis (LaSIS, University of Florence, Italy) in order to analyse the driving behaviors of volunteers, also considering the influence of ADAS devices. Forty-five young volunteers were enrolled for this study, resulting in forty valid tests on different testing scenarios. Two different scenarios consisted in driving with or without ADAS in the vehicle. Different kinds of ADAS, acoustic and optical, with different time of intervention were tested in order to study the different reactions of the driver. The tests showed some interesting differences between driver's behavior when approaching the critical situation. Drivers with ADAS reacted earlier, but more slowly, depending also on the type of alarm, and often with double reaction when braking. In fact, the results of the activity showed that with ADAS intervention the time to collision (TTC) increases, but the reaction time and braking modality change: a) there is a sort of "latency" time between the accelerator pedal release and the brake pressure; b) the brake pressure is initially less intense. So the driver only partially takes advance from the TTC increase. These differences were valued not only qualitatively, but quantitatively as well. This work revealed to be useful to improve the knowledge of drivers" behavior, in order to realize a driver model that can be implemented to help attaining and assessing higher levels of automation through new technology.
Assessment of the effectiveness of Intersection Assistance Systems at urban and rural accident sites
(2015)
An Intersection Collision Avoidance System is a promising safety system for accident avoidance or injury mitigation at junctions. However, there is still a lack of evidence of the effectiveness, due to the missing real accident data concerning Advanced Driver Assistance Systems. The objective of this study is the assessment of the effectiveness of an Intersection Collision Avoidance System based on real accidents. The method used is called virtual pre-crash simulation. Accidents at junctions were reconstructed by using the numerical simulation software PC-Crashâ„¢. This first simulation is called the baseline simulation. In a second step the vehicles of these accidents were equipped with an Intersection Collision Avoidance System and simulated again. The second simulation is called the system simulation. In the system simulation two different sensors and four different intervention strategies were used, based on a time-to-collision approach. The effectiveness of Intersection Collision Avoidance System has been evaluated by using an assessment function. On average 9% of the reviewed junction accidents could have been avoided within the system simulations. The other simulation results clearly showed a change in the principal direction of force, delta-v and reduction of the injury severity.
Due to recent years accident avoidance and crashworthiness on Austrian roads were mostly developed on national statistics and on-scene investigation respectively. Identification and elimination of black spots were main targets. In fact many fatal accidents do not occur on such black spots and black-spot investigation has reached a limit. New methods are required and therefore the Austrian Road Safety Programme was introduced by the Austrian Ministry of Transport, Innovation and Technology. The primary objective is the reduction of fatalities and severe injuries. Graz University of Technology initiated the project ZEDATU (Zentrale Datenbank tödlicher Unfälle) with the goal to identify similarities in different accident configurations. A matrix was established which categorizes risk and key factors of participating parties. Based on this information countermeasures were worked out.