Refine
Keywords
- Konferenz (14)
- Conference (13)
- Verletzung (11)
- Injury (10)
- Deutschland (9)
- Germany (8)
- Schweregrad (Unfall, Verletzung) (8)
- Accident (7)
- Severity (accid, injury) (7)
- Unfall (6)
The purpose of this study was to analyse the actual injury situation of bicyclists regarding accidents involving more than one bicyclist. Bicyclists were included in a medical and technical analysis to create a basis for preventive measures and discovered repeating accident patterns and circumstances such as daytime, environment, helmet use rate. Technical and medical data were collected at the scene, shortly after accident. The population was compared focusing on bicycle versus bicycle accidents. Technical analysis included speed at crash, type of collision, impact angle, environment, used lane and relative velocity. Medical analysis included injury pattern and severity (AIS, ISS). Included were 578 injured bicyclists in 289 accidents from years 1999 to 2008, 61 percent were male (n=350) and 39 percent female (n=228). Sixty-seven percent ranged between 18 to 64 years of age, twelve percent each between 13 to 17 years of age and older than 65 years, eight percent between 6 to 12 years and one percent between 2 to 5 years.. Crashes took place in urban areas in 92 percent, in rural areas in 8 percent. Weather conditions were dry lanes in 97 percent and wet conditions in 3 percent. Eighty-three percent of all accidents happened during daytime, ten percent during night, and seven percent during dawn. The helmet use rate was only 7,5 percent in all involved bicyclists. The mean Maximum Abbreviated injury scale, Injury severity score was 1,31. Bicyclists are still minimally- or unprotected road users. The helmet use rate is unsatisfactorily low. The incidence of bicycle to bicycle crashes is high. Most of these accidents take place in urban areas. The level and pattern of injuries is moderate. Most of the more severe injuries occur to the head and could have been avoided by frequent helmet use.
While cyclists and pedestrians are known to be at significant risk for severe injuries when exposed to road traffic accidents (RTAs) involving trucks, little is known about RTA injury risk for truck drivers. The objective of this study is to analyze the injury severity in truck drivers following RTAs. Between 1999 and 2008 the Hannover Medical School Accident Research Unit prospectively documented 43,000 RTAs involving 582 trucks. Injury severity including the abbreviated injury scale (AIS) and the maximum abbreviated injury scale (MAIS) were analyzed. Technical parameters (e.g. delta-v, direction of impact), the location of accident, and its dependency on the road type were also taken into consideration. The results show that the safety of truck drivers is assured by their vehicles, the consequence being that the risk of becoming injured is likely to be low. However, the legs especially are at high risk for severe injuries during RTAs. This probability increases in the instance of a collision with another truck. Nevertheless, in RTAs involving trucks and regular passenger vehicles, the other party is in higher risk of injury.
Still correlated with high mortality rates in traffic accidents traumatic aortic ruptures were frequently detected in unprotected car occupants in the early years. This biomechanical analysis investigates the different kinds of injury mechanisms leading to traumatic aortic injuries in todays traffic accidents and how the way of traffic participation affects the frequency of those injuries over the years. Based on GIDAS reported traffic accidents from 1973 to 2014 are analyzed. Results show that traumatic aortic injuries are mainly observed in high-speed accidents with high body deceleration and direct load force to the chest. Mostly chest compression is responsible for the load direction to the cardiac vessels. The main observed load vector is from caudal-ventral and from ventral solely, but also force impact from left and right side and in roll-over events with chest compression lead to traumatic aortic injuries. Classically, the injury appeares at the junction between the well-fixed aortic arch and the pars decendens following a kind of a scoop mechanism, a few cases with a hyperflexion mechanism are also described. In our analysis the deceleration effect alone never led to an aortic rupture. Comparing the past 40 years aortic injuries shift from unprotected car occupants to today's unprotected vulnerable road users like pedestrians, cyclists and motorcyclists. Still the accident characteristics are linked with chest compression force under high speed impact, no seatbelt and direct body impact.
Bicyclists are minimally or unprotected road users. Their vulnerability results in a high injury risk despite their relatively low own speed. However, the actual injury situation of bicyclists has not been investigated very well so far. The purpose of this study was to analyze the actual injury situation of bicyclists in Germany to create a basis for effective preventive measures. Technical and medical data were prospectively collected shortly after the accident at the accident scenes and medical institutions providing care for the injured. Data of injured bicyclists from 1985 to 2003 were analyzed for the following parameters: collision opponent, collision type, collision speed (km/h), Abbreviated Injury Scale (AIS), Maximum AIS (MAIS), incidence of polytrauma (Injury Severity Score >16), incidence of death (death before end of first hospital stay). 4,264 injured bicyclists were included. 55% were male and 45% female. The age was grouped to preschool age in 0.9%, 6 to 12 years in 10.8%, 13 to 17 years in 10.4%, 18 to 64 years in 64.7%, and over 64 years in 13.2%. The MAIS was 1 in 78.8%, 2 in 17.0%, 3 in 3.0%, 4 in 0.6%, 5 in 0.4%, and 6 in 0.2%. The incidence of polytrauma was 0.9%, and the incidence of death was 0.5%. The incidence of injuries to different body regions was as follows: head, 47.8%; neck, 5.2%, thorax, 21%; upper extremities, 46.3%; abdomen, 5.8%; pelvis, 11.5%, lower extremities, 62.1%. The accident location was urban in 95.2%, and rural in 4.8%. The accidents happened during daylight in 82.4%, during night in 12.2%, and during dawn/dusk in 5.3%. The road situation was as follows: straight, 27.3%; bend, 3.0%; junction, 32.0%; crossing, 26.4%; gate, 5.9%; others, 5.4%. The collision opponents were cars in 65.8%, trucks in 7.2%, bicycles in 7.4%, standing objects in 8.8%, multiple objects in 4.3%, and others in 6.5%. The collision speed was grouped <31 in 77.9%, 31-50 in 4.9%, 51-70 in 3.7%, and >70 in 1.5%. The helmet use rate was 1.5%. 68% of the registered head injuries were located in the effective helmet protection area. In bicyclists, head and extremities are at high risk for injuries. The helmet use rate is unsatisfactorily low. Remarkably, two thirds of the head injuries could have been prevented by helmets. Accidents are concentrated to crossings, junctions and gates. A significant lower mean injury severity was observed in victims using separate bicycle lanes. These results do strongly support the extension or addition of bicycle lanes and their consequent use. However, the lanes are frequently interrupted at crossings and junctions. This emphasizes also the important endangering of bicyclists coming from crossings, junctions and gates, i.e. all situations in which contact of bicyclists to motorized vehicles is possible. Redesigning junctions and bicycle traffic lanes to minimize the possibility of this dangerous contact would be preventive measures. A more consequent helmet use and use and an extension of bicycle paths for a better separation of bicyclists and motorized vehicle would be simple but very effective preventive measures.
Ruptures and dissections of the thoracic and abdominal aortic vessel caused by traffic accidents are rare but potentially life-threatening injuries. They can occur by blunt trauma via seat belt or dashboard injury. The study aimed at evaluating the overall mortality, morbidity, neurological disorders, and differences in operative procedures of open repair and stenting. It shows that, with a change and improvement in diagnostic tools and surgical approach, mortality and morbidity of blunt aortic injuries were significantly reduced. Still an immediate life-threatening injury early diagnosis via multiple-slice and scans and surgical repair with minimally invasive stents showed excellent short-time results for selected patients.
This study aims to analyze spine injuries in motor vehicle accidents. Between 1985 and 2004 the Hannover accident research unit documented 18353 accidents. We identified 161 front passengers (0.53%) with cervical spine injuries, 84 (0.28%) with thoracic and 95 (0.31%) with lumbar injuries. Technical and medical data was reviewed. Patients" records were retrieved. X-rays were evaluated and fractures were classified according to the Magerl classification. 68% and 57% of thoracic and lumbar fractures occurred in accidents with multiple impacts. Delta-v was 50, 40 and 40 kph in passengers with cervical, thoracic and lumbar spine, resp. Passengers with spinal fractures frequently showed numerous concomitant injuries, e.g. additional vertebral fractures. The influence of seat belts and airbags is discussed. Patient work-up has to include a thorough investigation for additional injuries.
To elucidate the risk of pedestrians, bicycle and motorbike users, data of two accident research units from 1999 to 2014 were analysed in regard to demographic data, collision details, preclinical and clinical data using SPSS. 14.295 injured vulnerable road users were included. 92 out of 3610 pedestrians ("P", 2.5%), 90 out of 8307 bicyclists ("B", 1.1%) and 115 out of 4094 motorcycle users ("M", 2.8%) were diagnosed with spinal fractures. Thoracic fractures were most frequent ahead of lumbar and cervical fractures. Car collisions were most frequent mechanism (68, 62 and 36%). MAIS was 3.8, 2.8 and 3.2 for P, B and A with ISS 32, 16 and 23. AIS-head was 2.2, 1.3 and 1.5). Vulnerable road users are at significant risk for spine fractures. These are often associated with severe additional injuries, e.g. the head and a very high overall trauma severity (polytrauma).
Although ATV accidents account for numerous deaths in the US and Australia, the role in traffic accidents and hospital admissions in Germany is unknown. At a level I trauma centre, hospital and crash charts were analysed for medical and technical parameters of ATV accidents. ATV drivers were 0.1% of emergency trauma patients. The mean total hospital stayrnwas 15 days; there were 1.5 stays per patients with 2.0 surgical procedures needed. One patient died, only two recovered fully. 14 cases of ATV accidents out of 18990 (0.1%) were documented within 10 years. The mean impact velocity was 35 km/h. Car collisions were predominant. The upper extremity was the predominant injured region (AIS 0.7), Mean maximum AIS was 1.4. ATV accidents in Germany are rare but pose high risk for severe injuries. Possible reasons are low active and passive security, limited experience and risky driving behaviour. Preventive measures are discussed.rn
Description of road traffic related knee injuries in published investigations is very heterogeneous. The purpose of this study was to estimate the risk of knee injuries in real world car impacts in Germany focusing vulnerable road users (pedestrians, bicyclists and motorcyclists) and restrained car drivers. The accident research unit analyses technical and medical data collected shortly after the accident at scene. Two different periods (years 1985-1993 and 1995-2003) were compared focusing on knee injuries (Abbreviated Injury Scale (AISKnee) 2/3). In order to determine the influences type of collision, direction and speed as well as the injury pattern and different injury scores (AIS, MAIS, ISS) were examined. 1.794 pedestrians, 742 motorcyclists, 2.728 bicyclists and 1.116 car drivers were extracted. 2% had serious ligamentous or bony injuries in relation to all injured. The risk of injury is higher for twowheelers than for pedestrians, but knee injury severity is higher for the latter group. Overall the current knee injury risk is low and significant reduced comparing both time periods (27%, p<0,0001). Severe injuries (AISKnee 2/3) were below 1%). Improved aerodynamic design of car fronts reduced the risk for severe knee injuries significantly (p=0,0015). Highest risk of injury is for motorcycle followed by pedestrians, respectively. Knee protectors could prevent injuries by reducing local forces. The classically described dashboard injury was rarely identified. The overall injury risk for knee injuries in road traffic is lower than estimated and reduced comparing both periods. The aerodynamic shape of current cars compared to older types reduced the incidence and severity of knee injuries. Further modification and optimization of the interior and exterior design could be a proper measurement. Classic described injury mechanisms were rarely identified. It seems that the AIS is still underestimating extremity injuries and their long term results.
Introduction: The incidence of trauma-related cervical-spine fractures is 19-88 / 100.000. In contrast, the incidence of cervical spine injuries is as high as 19% - 51% of all spinal trauma. Cervical spine injuries in non-polytrauma patients are rare. However, due to the potential damage to the spinal cord these traumata are feared and mustn't be missed. Cervical spine injuries represent the highest reported early mortality rate of all spinal trauma. The rate of functional impairment afterwards is high and the rate of reintegration into work is low compared to other organ systems. In the past, trauma surgeons often did x-rays of the cervical spine with low inhibition threshold and often without strong clinical suggestion for vertebral or discoligamental injuries. This practice was queried by the Canadian C-Spine rule and extensively discussed in the past. Therefore we did a retrospective study whether non-polytrauma patients benefit from cervical spine x-rays.
Novice drivers are at high risk for crash involvement. We performed an analysis of causations, injury patterns and distributions of novice drivers in cars and on motorcycles in road traffic as a basis for proper measurements. Method Data of accident and hospital records of novice drivers (licence < 2 years) were analysed focusing the following parameters: injury type, localisation and mechanism, Abbreviated Injury Scale (AIS), maximum AIS (MAIS), delta-v, collision speed and other technical parameters and have been compared to those of experienced drivers. In 18352 accidents in the area of Hannover (years1985"2004), 2602 novice drivers and 18214 experienced drivers were recorded having an accident. Novice car drivers were more often and severe injured than experienced and on motorcycles the experienced riders were at higher risk. Novice drivers of both groups sustained more often extremity injuries. 4.5 % novice car drivers were not restraint compared to 3.7 % of the experienced drivers and 6.1 % novice motorcycle drivers did not wear a proper helmet (versus 6.5 %). Severe injuries sustained at a rate of 20 % at collision speeds below 30 km/h and in 80% at collision speeds above 50 km/h. Novice car drivers drove significant older cars. The risk profile of novice drivers is similar to those of drivers older than 65 years. Structural protection and special lectures like skidding courses could be proper remedial action next to harder punishment of violations.
Introduction: Spine injuries pose a considerable risk to life and quality of life. The total number of road deaths in developed countries has markedly decreased, e.g. in Germany from over 20000 in 1970 to less than 4000 in 2010, but little is known how this is reflected in the burden of spine fractures of motor vehicle users. In this study, we aimed to show the actual incidence of spine injuries among drivers and front passengers and elucidate possible dependencies between crash mechanisms and types of injuries.
In the context of this study, different data sources for accident research were examined regarding their possible data access and evaluated concerning the individual quality and extent of the data. Analyses of accidents require detailed and comprehensive information in particular concerning vehicle damages, injury patterns and descriptions of the accident sequence. The police documentation supplies the basic accident statistics and is amended in the context of the forensic treatment by further information, e.g. by medical and technical appraisals and witness questionings. As a new approach to the data acquisition for the analysis of fatal traffic accidents, the information was made usable which was collected by the police and by the investigations of the public prosecutor. The best strategy for obtaining reliable, extensive and complete data consists of combining the information from these two sources: the very complete, but elementary statistic data of the Niedersächsisches Landesamt für Statistik (Lower Saxony State Authority of Statistics), based on the police documentation as well as the very extensive accident information resulting from the investigation documentation of the public prosecutor after conclusion of the procedure, the so-called Court Records. Of all 715 fatal traffic accidents, which happened in the year 2003 in the German State of Lower Saxony, 238 cases were selected by means of a statistically coincidental selective procedure based on a statistically representative manner (every third accident). These cases cover the investigation documents of the 11 responsible public prosecutor- offices, which were requested and evaluated while preserving the data security. Of the 238 cases 202 cases were available, which were individually coded and stored in a data base using 160 variables. Thus a data base of a sample of representative data for fatal accidents in Lower Saxony was set up. The data base contains extensive information concerning general accident data (35 variables), concerning road and road surface data (30 variables), concerning vehicle-specific data (68 variables) as well as concerning personal and injury data (27 variables).
Injury severity of e.g. pedestrians or bikers after crashes with cars that are reversing is almost unknown. However, crash victims of these injuries can frequently be seen in emergency departments and account for a large amount of patients every year. The objective of this study is to analyze injury severity of patients that were crashed into by reversing cars. The Hannover Medical School local accident research unit prospectively documented 43,000 road traffic accidents including 234 crashes involving reversing cars. Injury severity including the abbreviated injury scale (AIS) and the maximum abbreviated injury scale (MAIS) was analyzed as well as the location of the accident. As a result 234 accidents were included into this study. Pedestrians were injured in 141 crashes followed by 70 accidents involving bikers. The mean age of all crash victims was 57 -± 23 years. Most injuries took place on straight stretches (n = 81) as well as parking areas (n = 59), entries (n = 36) or crossroads (n = 24). The AIS of the lower extremities was highest followed by the upper extremities. The AIS of the neck was lowest. The mean MAIS was 1.3 -± 0.6. The paper concludes that the lower extremities show the highest risk to become injured during accidents with reversing cars. However, the risk of severe injuries is likely low.