Das Projekt "Experimentelle und theoretische Untersuchungen zur Querkraft- und Torsionstragfähigkeit von Betonbrücken im Bestand" hatte zum Ziel, auf der Grundlage experimenteller und theoretischer Untersuchungen Möglichkeiten für eine zutreffendere Abschätzung der Querkraft- und Torsionstragfähigkeit von Spannbetonbrücken im Bestand mit geringen Querkraftbewehrungsgraden zu entwickeln. Dabei erfolgte einerseits die Weiterentwicklung der bestehenden Bemessungsverfahren auf Stufe 2 der BEM-ING Teil 2. Andererseits wurden Handlungsempfehlungen für vertiefte Berechnungsmodelle, die in Stufe 4 der BEM-ING Teil 2 Anwendung finden können, erarbeitet, um eine Entscheidungs- und Anwendungshilfe zur Bewertung der Standsicherheit für Querkraft und Torsion der betreffenden Brücken-bauwerke bereitzustellen. Um die realen Systemeigenschaften der Brückenüberbauten hinsichtlich der Biege- und Schubschlankheit sowie der Belastungsart möglichst repräsentativ abzubilden, wurden großformatige nachträglich vorgespannte Versuchskörper an drei verschiedenen Forschungseinrichtungen getestet. Während an der RWTH Aachen University an 16,5 m langen Durchlaufträgern und an der TU München an 4,5 m langen Substrukturen Querkraftversuche mit den Einflussparametern Querschnittsform, Querkraftbewehrungsgrad, Vorspanngrad, Durchlaufwirkung, Belastungsart und Verbundbedingung der Längsbewehrung durchgeführt wurden, sind an der TU Dortmund Querkraftversuche mit zusätzlicher Torsion an 12 m langen Durchlaufträgern unter Variation der Querschnittsform, der Interaktion von Momenten-, Querkraft- und Torsionsbeanspruchung, der Druckstrebenneigung und der Bügelformen untersucht worden. Im Schlussbericht wurden die Ergebnisse der experimentellen und theoretischen Untersuchungen dar-gestellt. Dazu wurde zunächst eine Zusammenfassung der Bemessung von Spannbetonbauteilen für Querkraft sowie Querkraft mit zusätzlicher Torsion nach aktueller Norm sowie der verfeinerten Bemessungsansätze auf Stufe 2 der BEM-ING Teil 2 gegeben und das Sicherheitskonzept der Bemessung im Bauwesen erläutert. Im darauffolgenden Abschnitt wurden die experimentellen Untersuchungspro-gramme der drei teilnehmenden Universitäten in Aachen, München und Dortmund dargestellt. Um die analytischen und numerischen Verfahren auf Stufe 2 und Stufe 4 der BEM-ING Teil 2 anzuwenden und zu vergleichen, wurden anschließend weitere experimentelle Untersuchungen aus der Literatur und ausgewählten Bauwerke dokumentiert, die anschließend zur Nachrechnung mit verschiedenen Modellen herangezogen wurden. Auf Grundlage der umfangreichen experimentellen Untersuchungen sowie einer Datenbankauswertung mit knapp 1300 Querkraftversuchen an Stahl- und Spannbetonträgern mit und ohne Querkraftbewehrung erfolgte eine Erweiterung der Querkraft- und Torsionsmodelle der Stufe 2 der BEM-ING Teil 2. Dadurch konnte eine realistischere Erfassung der günstigen Einflüsse gegliederter Querschnittsformen (bV,eff), einer Beanspruchung infolge verteilten Lasten (ΔVEd) und einer Vorspannung samt Spannungszuwachs (P+ΔP) ermöglicht werden. Anhand der durchgeführten Versuche mit Querkraft und zusätzlicher Torsion konnte gezeigt werden, dass durch Umlagerungen der inne-ren Kräfte eine Rotation der Druckstrebe im Bereich 1,75 ≤ cotθ ≤ 2,5 möglich und die freie Wahl der Druckstrebenneigung cotθ daher gerechtfertigt ist. Weiterhin dürfen unterschiedliche θ für die Nach-weise für Querkraft sowie Querkraft und Torsion angesetzt werden. Allerdings wird empfohlen, den Beiwert der Betondruckfestigkeit ν abhängig vom Überbauquerschnitt abzumindern. Der Nachweis gegen Betondruckversagen bei kombinierter Beanspruchung erfolgt dann auf Basis einer linearen Interaktion aus Querkraft und Torsion (V + T). Die Anwendung der vorgeschlagenen Weiterentwicklung der Querkraft- und Torsionsbemessung auf vier bestehende Brücken verdeutlicht den in der Praxis dringend benötigten Mehrwert des verfeinerten Bemessungsansatzes auf Stufe 2 der BEM-ING Teil 2. Neben der Vorstellung in Stufe 4 der BEM-ING Teil 2 gängiger Verfahren zur Brückennachrechnung wurden jeweils die wesentlichen Schritte der Berechnung bzw. Modellierung erläutert. Auf Basis einer anschließenden Bewertung der wissenschaftlichen Verfahren wurden Empfehlungen für eine breitere und trotzdem ausreichend sichere Anwendung für die Praxis gegeben. Hierbei wurden u.a. die Art der Modellierung, der Ansatz der Materialkennwerte, ein angepasstes Sicherheitskonzept für nichtlineare Verfahren einschließlich der Modellunsicherheit, der Umgang mit nicht normkonformer Bügel- und Längsbewehrung sowie die Vergleichbarkeit mit den anderen Stufe 4-Verfahren berücksichtigt. Für eine Auswahl der betrachteten Verfahren wurden durch vertiefte Untersuchungen Handlungsempfehlungen erarbeitet, die im Format und Wording an die BEM-ING Teil 2 angepasst wurden. In einem abschließenden Benchmark-Test wurde eine Auswahl an Versuchen und deren Nachrechnung dokumentiert, sodass in Zukunft die Eignung weiterer wissenschaftlicher Verfahren zur Nachrechnung von Betonbrücken bewertet werden kann.
Die für die Bemessung von Neubauten maßgebenden DIN-Fachberichte mit dem darin enthaltenen Sicherheitskonzept sind nicht geeignet, die tatsächliche Tragsicherheit bestehender älterer Spannbetonbrücken zu beurteilen. Die seinerzeit für die Bemessung und Konstruktion gültigen Normen wurden sowohl was die Einwirkungsseite als auch was die Widerstandsseite betrifft ständig weiterentwickelt und an neue hinzugewonnene Erkenntnisse angepasst. Dies hat zwangsläufig zur Folge, dass sich bei der Nachrechnung älterer Bestandsbrücken auf der Grundlage neuerer Normen die höhere Anforderungen beinhalten, häufig keine Nachweise mit normgemäßen Sicherheitsfaktoren führen lassen. Im Rahmen des FE-Vorhabens wurde objektbezogen an zwei Brücken untersucht, welche möglichen Tragreserven sich unter Einbeziehung des Entwurfs der Nachrechnungsrichtlinie identifizieren lassen. Die betrachteten Talbrücken Lützelbach (Hohlkasten) und Volkersbach (Plattenbalken) waren zuvor bereits normgemäßen Nachrechnungen unterzogen worden, bei denen sowohl im Grenzzustand der Gebrauchstauglichkeit, wie auch im Grenzzustand der Tragfähigkeit Defizite festgestellt wurden. Unter anderem wurden gegenüber dem für Neubauten konzipierten Sicherheitskonzept modifizierte Teilsicherheitsbeiwerte für die Besonderheiten bei der Nachrechnung des Bestands in Ansatz gebracht. Für die realitätsnahe Ermittlung der jeweiligen Tragwiderstände wurden alternative und genauere Verfahren auf ihre Eignung hin untersucht und in Ansatz gebracht. Die Tragwerke wurden in größerem Umfang als allgemein üblich auf Umlagerungsmöglichkeiten und Systemredundanzen hin untersucht. Insgesamt kann festgestellt werden, dass bei Anwendung eines für die Nachrechnung bestehender Bauwerke angepassten Sicherheitskonzepts und geeigneter alternativer Nachweisverfahren, Tragreserven bei den beiden betrachteten Brückenbauwerken identifiziert und genutzt werden können. Die bei normgemäßen Nachrechnungen festgestellten Defizite konnten in weiten Bereichen reduziert oder sogar ganz aufgehoben werden. Ein hoher Aufwand bei der Nachrechnung bestehender Brückenbauwerke scheint zielführend und gerechtfertigt, vor allem wenn sich dadurch der noch höhere Aufwand für Planung und Ausführung von Verstärkungsmaßnahmen vermeiden lässt.
Bei der Nachrechnung bestehender Spannbetonbrücken auf Grundlage aktueller Normen zeigen sich i.A. erhebliche Defizite bei der erforderlichen Querkraftbewehrung. Dies ist zum einen auf höhere Verkehrslasten infolge des kontinuierlich gestiegenen Schwerverkehrs und zum anderen auf die Weiterentwicklung der Verfahren zum Nachweis der Querkrafttragfähigkeit zurückzuführen. Zudem erfolgte in Deutschland erst im Jahr 1966 die Festlegung einer erforderlichen Mindestquerkraftbewehrungsmenge. Die Nachweisverfahren für die Querkrafttragfähigkeit von Spannbetonbalken beruhen im Wesentlichen auf Versuchen an Einfeldträgern und sind bekanntlich sehr konservativ. Daher wurden am Lehrstuhl Betonbau der TU Dortmund in einem Großversuch experimentelle Untersuchungen zur Querkrafttragfähigkeit an einem vorgespannten Zweifeldträger durchgeführt, mit dem Ziel, Grundlagen für ein genaueres Nachweisverfahren zu schaffen. Von besonderem Interesse war das Tragverhalten im Bereich der Innenstütze. Die Gesamtlänge des Versuchsträgers betrug 12,0 m, die Stützweiten ergaben sich zu 5,75 m. Die Querkraftbewehrung des Balkens entsprach der rechnerisch erforderlichen Mindestquerkraftbewehrung nach DIN-Fachbericht 102. Lediglich in einem begrenzten Bereich unmittelbar neben der Innenstütze eines Feldes entsprach sie der doppelten Mindestquerkraftbewehrung. Da bisher kaum experimentelle Untersuchungen zum Querkrafttragverhalten an Innenstützen durchgeführt wurden, wurden die Verformungen in diesem Bereich während der Versuchsdurchführung zusätzlich mit einem optischen Messverfahren aufgezeichnet. Zur kontinuierlichen Erfassung des Tragverhaltens des gesamten Bauteils wurden zudem an der Querkraft- und Längsbewehrung des Versuchsträgers über 250 Dehnungsmessstreifen aufgebracht. Die Versuchsauswertung enthält eine umfangreiche Darstellung der Messwerte und zusätzlich Versuchsnachrechnungen unter Anwendung des Druckbogenmodells sowie mittels numerischer Simulationen.
Untersuchungen zur Querkraftbemessung von Spannbetonbalken mit girlandenförmiger Spanngliedführung
(2011)
Die Literaturrecherche zeigte, dass seit Beginn der Spannbetonbemessung der innere Hebelarm z auf der Grundlage von Annahmen bestimmt wird, die zum Teil stark variieren. Dies liegt vor allem daran, dass die Querkraftbemessung ursprünglich an Stahlbetonbauteilen hergeleitet wurde. Für Spannbetonbauteile wird in der Literatur ein Hebelarm von z=0,67d bis z=0,90d vorgeschlagen. Alle Quellen sind sich darüber einig, dass der Querkrafttraganteil der geneigten Spannglieder zu berücksichtigen ist. Des Weiteren sind Unterschiede in den aktuellen Normen zu finden. Während im DIN FB 102 im Allgemeinen der innere Hebelarm z aus dem Nachweis im GZT infolge Biegung mit oder ohne Längskraft im gleichen Querschnitt aus dem zugehörigen Moment verwendet werden soll, wird in der DIN 1045-1 nichts dergleichen erwähnt, sondern es darf z=0,9d angesetzt werden, sofern eine ausreichende Längsbewehrung aus Betonstahl vorhanden ist. Der EC 2 erlaubt hingegen den inneren Hebelarm z aus dem maximalen Biegemoment im betrachteten Bauteil zu berechnen. In einigen Literaturquellen, so auch im EC 2 wird außerdem gefordert, dass bei Bauteilen mit geneigten Spanngliedern ausreichend Betonstahllängsbewehrung im Zuggurt einzulegen ist. Die Auswertung der Stuttgarter Versuche zeigte, dass bei der Frage nach dem korrekten Ansatz für z zwei Bereiche zu unterscheiden sind. In dem Bereich, in dem die Schubrisse aus Biegeanrissen am Querschnittsrand entstehen ändert der Schubriss auf Höhe der Spannglieder seine Neigung. Die Änderung des Neigungswinkels ist abhängig von den Steifigkeitsverhältnissen der Zugbänder. Für diesen Bereich wird ein Ansatz vorgeschlagen, bei dem die Querschnittsflächen des Spannstahls Ap und Betonstahl As mit den für den Schub maßgebenden Spannungen gewichtet werden. Der Bereich, in dem die Spannglieder überdrückt sind und die flacher verlaufenden Schubrisse ohne Neigungswechsel kurz über die Spannglieder hinweg verlaufen, erstreckt sich horizontal vom Auflager bis zu ca. 1,5h. Hier wird das Stegfachwerk wesentlich entlastet durch den Druckbogen, der sich bei den hier untersuchten Trägern aufgrund der sehr schwachen schlaffen Zuggurtbewehrung zusammen mit der sich bis zum Auflager durchlaufenden Druckstrebe fast ausschließlich auf den Spannanker abstützt. Die Größe der gegebenenfalls erforderlichen schlaffen Zuggurtbewehrung für die Abdeckung der Zugkraft am Auflager muss noch untersucht werden.