Refine
Keywords
- Germany (4)
- Accident (3)
- Conference (3)
- Deutschland (3)
- Unfall (3)
- Accident prevention (2)
- Active safety system (2)
- Aktives Sicherheitssystem (2)
- Driver assistance system (2)
- Fahrerassistenzsystem (2)
Topics of the status report are: Road accidents in Germany " Socio-economic costs due to road traffic accidents in Germany " Vehicle population and road performance " Electromobility " Alternative power train technologies: market penetration and consequences. The following research subjects are presented: Safety of electric vehicles " Driving dynamics of electric propelled vehicles " New requirements for the periodic technical inspection of electric and hybrid vehicles " Forward looking safety systems " Periodic roadworthiness tests " Cooperative systems: integration of existing systems " Safety related traffic information " Urban space: User oriented assistance systems and network management " Automated driving " Study on camera-monitor-systems " Freight transport " BioRID TEG, dummy harmonization " Frontal impact and compatibility " Child safety " FlexPLI " GIDAS: a blueprint for worldwide in-depth road accident investigations " Druid: Driving under the influence of drugs, alcohol and medicines " Smoke and toxicity in bus fires.
Topics of the status report are: Road accidents in Germany ; Socio-economic costs due to road traffic accidents in Germany , German Road Safety Programme. Finished projects: Turning Assist Systems for Trucks ; Handbook „Accessibility in long-distance bus transport“ ; EU project PROSPECT ; Intersection assistance (Euro NCAP) ; Personal Light Electric Vehicles (PLEV) ; Automatic Emergency Braking for Heavy Goods Vehicles ; KO-HAF ; AFAS ; SENIORS ; Adoption of UN-GTR9-PH2. Ongoing and planned research: Safety potential and testing of reversing assistants for passengers cars (M1) and LGV´s (N1) ; Study on winter tires ; Automatic Emergency Braking for passenger cars ; Motorcyclist-friendly safety barriers ; Active motorcycle safety ; EU-Project PIONEERS ; Friction prediction ; Bus safety: smoke gas toxicity ; HMI aspects on Camera-Monitor-Systems ; Activities with regard to UN R 22 and helmets for S-Pedelecs ; Seriously injured road accident casualties ; UNECE IWG on Deployable Pedestrian Protection Systems (Active bonnets) ; GIDAS – new requirements to address new vehicle technology ; Human Body Modelling ; Child Safety at the UNECE with regard to R 129 ; Development of requirements on automated driving functions for vehicle regulations ; EU-Project L3-Pilot ; Development of evaluation methods for driver interaction with assistance and automation (national research and Euro NCAP) ; EU-Project OSCCAR ; PEGASUS ; Development of basic scenarios for the description of control-relevant requirements for continuous automated vehicle guidance ; EU project HEADSTART ; C-Roads Germany ; Practical Test for the Quality of Congestion-Tail Information ; Research program road safety.
There is a need to continue to set the right vehicle safety policy priorities in the future. Research has to point out the most cost efficient and safety relevant measures to further reduce the number of road traffic casualties. The overall development shows that the constant and rapid decrease in the number of road casualties slows down. New innovations need to enter the vehicle market soon, in order to continue the success achieved in the last decade. Priorities for vehicle safety are driven by safety and mobility demands. It is necessary to keep a strong lid on all aspects of elderly and vulnerable road users. The fraction of powered-two-wheelers (PTW) is a priority group. PTWs have a risk of being involved in an accident, 14times higher than that of a passenger car. However, the figures do also show that every second fatality is a car occupant. Therefore passenger car safety remains to be top priority. Heavy goods vehicles are overly represented in fatal accidents, addressing the need to make these vehicles more compatible with other road users. These facts highlight the necessity not only to increase vehicles" self protection, but also to make cars - and trucks - more compatible and safe. Cycling is a strongly increasing mode of transport. This is a further reason to demand better protection for cyclists and pedestrians from car design and car active and integrated safety systems. Another priority for future vehicle safety is related to demographics. It is less known that the purely demographic effect will be superimposed by an increasing wish of elderly people to be mobile. However, elderly people show deficits concerning their biomechanics. This emphasizes the need for better and more adaptive restraint systems, but also further technological challenges and demands for active safety systems. However, in order to progress, current technological limitations have to be overcome. Cost benefit considerations, but also consumer acceptance and desires, will drive this process.
Enhanced protection of pedestrians and cyclists remains on the focus. Besides infrastructural and behavioral aspects it is necessary to exploit technical solutions placed on motorized vehicles. Accident research needs reliable data as well as national road accident statistics. Changing the view on seriously injured road users is one of the challenges which will substantially contribute to the optimization on future traffic safety. The missing accuracy in the definition of personal injury has a detrimental effect on making cost efficient road safety policy which is not only focused on fatal accidents. The European commission requested that, starting in 2015, all EU member states provide more detailed data on the injury status of road casualties, with special regard to the group of seriously injured. Conventional accident data will always be essential. But to obtain detailed data about driver behavior in real traffic situations further data sources are required. These could be EDR data, data from electronic control units, data from traffic surveys and traffic counting, naturalistic diving studies and field operational tests. Gaining insight into normal as well as critical driver behavior will enable accident researchers to deduct functions estimating the increase or decrease of accident risk associated with certain behaviors or vehicle functions. Also with view to the introduction of highly automated driving functions in the future such data is urgently needed. Computer simulation based tools to estimate the benefits of active safety systems are another step on the way towards the safety assessment of automated driving. It is now the duty of the scientific community to ask the right questions, to develop a methodology and to merge all these data sources into a common framework for the assessment of future traffic safety innovations.