Refine
Keywords
- Deutschland (2)
- Forschungsarbeit (2)
- Germany (2)
- Lärm (2)
- Noise (2)
- Adhesion (1)
- Adhäsion (1)
- Aggregate (1)
- Berechnung (1)
- Calculation (1)
Unter der Schirmherrschaft des Bundesministeriums für Bildung und Forschung mit Unterstützung des Bundesministeriums für Verkehr, Bau- und Wohnungswesen wurde der Forschungsverbund "Leiser Verkehr" ins Leben gerufen. Darin bildet das Forschungsprogramm "Leiser Straßenverkehr" einen herausragenden Bereich. Um Lärmminderungspotentiale konsequent auszuschöpfen und damit den Bau von lokal begrenzten, kostspieligen Infrastruktureinrichtungen (wie zum Beispiel Schallschutzwänden) zu vermeiden, müssen Maßnahmen an der Quelle " in der Kontaktfläche Reifen/Fahrbahn " ansetzen, wobei das Gesamtsystem Reifen, Fahrzeug, Fahrbahn zu optimieren ist. 15 Partner aus Reifen-, Fahrzeug- und Straßenbauindustrie sowie der Forschung waren unter Leitung der Bundesanstalt für Straßenwesen von Mitte 2001 bis Ende 2003 an dem Projekt "Leiser Straßenverkehr" beteiligt. Ausgehend von Untersuchungen auf fünf verschiedenen Fahrbahnoberflächen an 40 Reifensätzen, die sich durch Profil, Gummimischung und Unterbau unterschieden, zeigte einer der Reifen mit selbsttragender Seitenwand auf allen Belägen die größten Geräuschminderungen. Der Schalldruckpegel bei 80 km/h reduzierte sich um 1,3 dB(A) auf Splittmastixasphalt und um 1,7 dB(A) auf Betondecke mit Jutetuchlängsstrich gegenüber einem handelsüblichen Reifen. An der Komponente Fahrzeug erfolgten Modifikationen am PKW-Radhaus, die das Gesamtpotential ausloteten. Die Geräuschreduzierung bei 80 km/h durch die Auskleidung mit schallabsorbierendem Schaumstoff sowie die zusätzliche Abdeckung der hinteren Radausschnitte und vorderen Radscheiben im Vergleich zum Serienradhaus betrug 0,5 dB(A) bis 2 dB(A) in Abhängigkeit des Belages. Die optimierten Fahrbahnoberflächen zeigten im Vergleich zur Referenzoberfläche "nicht geriffelter Gussasphalt" zum Teil deutliche Geräuschminderungen. Der Schalldruckpegel von LKW bei 80 km/h reduzierte sich auf einem verbesserten offenporigen Asphalt, gemessen auf der Bundesautobahn A1, um rund 4 dB(A). Auf der Bundesstraße B56 wiesen Fahrbahnoberflächen aus offenporigem Beton, Waschbeton und lärmreduziertem Gussasphalt bei 100 km/h einen bis zu 6 dB(A) geringeren PKW-Vorbeifahrtpegel auf. Die Gesamtbewertung aller optimierten Komponenten des Systems Reifen-Fahrzeug-Fahrbahn erfolgte in Form eines Experimentes auf der B56. Als Referenz fungierte ein mit handelsüblichen Reifen und Serienradhaus ausgestattetes Fahrzeug auf einer Fahrbahnoberfläche aus Splittmastixsasphalt beziehungsweise Betondecke mit Jutetuchlängsstrich. Die Schallmessungen bei 80 km/h erzielten einen um 3 dB(A) verminderten Vorbeifahrtpegel auf einer Oberfläche aus lärmgemindertem Gussasphalt sowie einen um 7 dB(A) reduzierten Pegel auf einer Fahrbahn aus offenporigem Beton. Die Weiterentwicklung von Fahrbahnübergängen an Brücken zielte auf die Annäherung der Schallemissionen bei der Reifenüberrollung an die der angrenzenden Fahrbahnoberfläche ab. Es wurden vier Varianten untersucht. Die Übergänge mit aufgeschraubten, wellenförmigen Blechen brachten eine Lärmminderung bis zu 3 dB(A) gegenüber einem repräsentativen regelgeprüften Fahrbahnübergang in Lamellenbauweise. Der neuentwickelte Lamellenübergang mit fugenfüllendem Elastomerprofil zeigte bei den Messungen noch nicht die erwartete Lärmminderungswirkung. Über diese Forschungsaktivitäten hinaus wurden in situ-Messsysteme für zwei akustische Eigenschaften entwickelt, deren Erfassung bisher nur im Labor möglich war. Diese Parameter dienten unter anderem der Erweiterung eines statistischen Modells ("SPERoN") zur Analyse des akustischen Verhaltens von dichten und offenporigen Fahrbahnoberflächen. Ein physikalisches Finite-Elemente-Modell zur Simulation von Reifen-Fahrbahn-Geräuschen befindet sich derzeit in der Entwicklung und soll bis Ende 2004 fertig gestellt sein. Das diesem Bericht zugrunde liegende Vorhaben wurde aus Mitteln des Bundeministeriums für Bildung und Forschung unter dem Förderkreiskennzeichen 19 U 1055 gefördert. Die Verantwortung für den Inhalt dieser gemeinsamen Veröffentlichung liegt bei den Autoren
Mit dem Ziel die Verkehrssicherheit zu verbessern sowie den intermodalen Verkehr und die Nachhaltigkeit im Straßenbau zu fördern, legten im Jahr 2003 die OECD -Mitgliedsländer ein Verkehrsforschungsprogramm auf. In diesem Rahmen wurde das Projekt \"Beurteilung der Wirtschaftlichkeit langlebiger Straßenbeläge\" initiiert. Phase I dieses Projektes beinhaltete dazu eine internationale Studie. Ein Ergebnis der Studie ist, dass der Einsatz langlebiger Deckschichten trotz anfänglich höherer Baukosten für stark beanspruchte Straßen aufgrund geringerer Unterhaltungsarbeiten und damit Verzögerungen für den Straßennutzer wirtschaftlich vorteilhaft sein können. Darüber hinaus konnten zwei Materialien gefunden werden, die sich derzeit in der Entwicklung befinden beziehungsweise bisher in Kleinprojekten eingesetzt wurden, die den Anforderungen an eine langlebige Deckschicht genügen könnten - Epoxid-Asphalt und zementgebundene Hochleistungsmaterialien (HPCM). Mit einer Phase II wurde die Eignung der beiden Materialien hinsichtlich ihrer Verwendung als langlebige Straßendeckschicht im Labor beurteilt. Dafür wurden zwei Projektgruppen gebildet. Die Projektgruppe zur Entwicklung des HPCM arbeitet unter der Leitung des französischen Forschungsinstitutes Laboratoire Central des Pontes et Chaussées. Teil dieses Berichtes sind die Untersuchungen der Oberflächeneigenschaften des HPCM, die von der BASt selbst durchgeführt beziehungsweise in Auftrag gegeben wurden. Für die Untersuchungen war es erforderlich eigene HPCM-Probekörper herzustellen. Nach umfangreichen Vorversuchen mit dem angelieferten HPCM-Trockenmörtel sowohl mit als auch ohne Faserzugabe konnten Probeplatten mit der vorgegebenen Mörtelschichtdicke von 8 Millimeter zielsicher hergestellt werden. Die von der OECD-Projektgruppe empfohlene Abstreutechnik der groben Gesteinskörnung wurde dahingehend modifiziert, dass wassergesättigte Gesteinskörner manuell aufgestreut und anschließend mit einer nicht klebenden Platte angedrückt worden sind. Dadurch konnte der Kornverlust an der Oberfläche deutlich reduziert werden. Die Oberflächeneigenschaften und deren Verhalten unter den Einflüssen von Witterung und Verkehr wurden im Labor mit Hilfe des kombinierten Labor-Beanspruchungszykluses (Technische Universität München) sowie des Hybridmodells SperOn (Müller BBM) simuliert. Zusammenfassend lässt sich feststellen, dass die Mikro- und Makrotextur hinsichtlich des zu erwartenden Griffigkeitsverhaltens der Oberfläche sehr gute Eigenschaften aufweisen. Werden jedoch die Gestalt der Oberfläche, die die akustischen Eigenschaften beeinflusst, mit betrachtet, so weist die Oberfläche eine ungünstige Gestalt auf. Die Eigenschaften der HPCM-Oberfläche sollten unter Berücksichtigung der Hinweise für geräuschreduzierende Oberflächengestaltungen, wie zum Beispiel Reduzierung des Größtkorns oder Ausbildung der Oberfläche als Plateau mit Schluchten, weiter optimiert werden. Darüber hinaus ist das Verhalten der Oberfläche hinsichtlich des Kornverlustes und damit nicht weiter vorhandenem Griffigkeitspotenzial weiter zu untersuchen. Im Rahmen der Phase II werden großformatige Probeflächen mittels Rundlaufprüfanlagen in Frankreich und England untersucht. Die Ergebnisse könnten weiteres Optimierungspotenzial aufzeigen. Der Abschluss des OECD-Projektes, Phase II ist für Sommer 2007 geplant. Im Anschluss an die Phase II ist geplant, diese Ergebnisse sowie die dann verfügbaren Ansätze aus anderen EU-Projekten zu verknüpfen und einen langlebigen Straßenbelag im Originalmaßstab auf einer Versuchsstrecke zu erproben (Phase III).