Refine
Document Type
- Book (5)
- Part of a Book (2)
- Conference Proceeding (1)
- Working Paper (1)
Keywords
- Tunnel (8)
- Deutschland (5)
- Fire (5)
- Germany (5)
- Forschungsbericht (4)
- Risikobewertung (4)
- Risk assessment (4)
- Safety (4)
- Sicherheit (4)
- Feuer (3)
Institute
Die Aufrechterhaltung von Mobilität sowie der Schutz von Mensch und Natur vor den negativen Einwirkungen von Verkehr erfordern effiziente Lösungen zur Bewältigung des zunehmenden Güterfernverkehrs. Eine Möglichkeit zur Bewältigung des langfristig zunehmenden Straßengüterfernverkehrs wird in der Einführung größerer Transportfahrzeuge bzw. geänderter Fahrzeugkombinationen gesehen. Lang-Lkw weisen aufgrund der größeren maximalen Länge von 25,25 m unter Beibehaltung des bisher gültigen Gesamtgewichtes ein im Vergleich zu konventionellen Lkw vergrößertes Ladevolumen auf. Im Rahmen dieses Forschungsvorhabens wurde untersucht, ob aufgrund des Einsatzes von Lang-Lkw erhöhte Anforderungen an die sicherheits- und brandschutztechnische Ausstattung von Straßentunneln zu stellen sind. Auf Basis von Recherchen zu Ladevolumen und -zusammensetzung wurden Brandleistungen und Rauchfreisetzungsraten von Lang-Lkw ermittelt, mit denen anhand von CFD-Simulationen verschiedener Brandszenarien die Berechnung von Rauch- und Temperatureinwirkung auf die Tunnelnutzer durchgeführt wurde. In einer anschließenden quantitativen Sicherheitsbewertung wurden szenarioabhaengig Schadensausmaße und Eintrittshäufigkeiten der Situation eines nach RABT ausgestatteten Tunnels ohne Lang-Lkw-Verkehr vergleichend gegenübergestellt. Ziel dieses Forschungsvorhabens war es, zu überprüfen, ob die bisher festgelegten Brandlasten für Brände in Straßentunneln auch für Lang-Lkw zutreffen. Zudem waren die aus dem Einsatz von Lang-Lkw auf dem deutschen Straßennetz resultierenden Sicherheitsrisiken für Straßentunnel, insbesondere im Brandfall, zu identifizieren, zu quantifizieren und zu beurteilen. Die Auswirkungen von Fahrzeugbränden mit Lang-Lkw auf die Sicherheit der Tunnelnutzer wurden analysiert, um ggf. erhöhte sicherheitstechnische und brandschutztechnische Anforderungen an Straßentunnel abzuleiten. Die Ergebnisse und ihre Beurteilung wurden abschließend als Empfehlungen an Entscheidungsträger formuliert.
Mit der Fortschreibung des europäischen Übereinkommens über die internationale Beförderung gefährlicher Güter auf der Straße (ADR) von 2007 wurden Tunnelbeschränkungscodes für Gefahrgüter eingeführt. Hierdurch wurde die Grundlage für eine europaweit einheitliche Regelung im Falle einer Beschränkung von Gefahrguttransporten durch Straßentunnel geschaffen. Unter Berücksichtigung der EG-Tunnelrichtlinie und den RABT 2006 wurde für Deutschland ein Verfahren entwickelt, mit dem die Gefahrgutrisiken für alle Straßentunnel auf Basis von Risikoanalysen einheitlich bewertet und Einschränkungen für den Gefahrguttransport durch definierte Tunnelkategorien kenntlich gemacht werden können. Das entwickelte Verfahren zur risikobasierten Kategorisierung von Straßentunneln nach ADR 2007 ist zweistufig aufgebaut. In einer Grobbeurteilung (Stufe 1) wird in zwei Schritten ein Tunnel dahingehend überprüft, ob dieser für sämtliche Gefahrguttransporte freigegeben werden kann. Werden die Gefahrgutrisiken mit den einfachen Modellen der Stufe 1 als zu hoch bewertet, muss der Tunnel vertieft untersucht werden. Bei dieser vertieften Analyse (Stufe 2a) wird zunächst das intrinsische Risiko des Tunnels mit detaillierten Modellen und verfeinerten Eingangsdaten bestimmt. Liegt das ermittelte Risiko unterhalb einer auf Erfahrungswerten beruhenden Vergleichskurve, kann der Tunnel für sämtliche Gefahrguttransporte freigegeben werden. Liegt die Risikokurve oberhalb der Vergleichskurve, wird der Tunnel nach Bedarf kategorisiert, d. h. er wird für Transporte von Gefahrgüter mit gleichem Tunnelbeschränkungscode gesperrt bzw. es werden bauliche, technische oder organisatorische Maßnahmen getroffen um das Risiko zu reduzieren. Im Falle einer Beschränkung sind die betroffenen zu transportierenden Güter über eine Umfahrungsstrecke zu leiten. Für die Umfahrungsstrecke ist in der Stufe 2b nachzuweisen, dass sie die aus der Umlegung resultierenden zusätzlichen Gefahrgutrisiken aufnehmen kann. Für die einzelnen Stufen bzw. Schritte wurden die Randbedingungen hergeleitet und definiert. Anforderungen an Modelle, Daten und Anwendung sind im Bericht mit Anhang so beschrieben, dass eine einheitliche Umsetzung möglich ist. Das entwickelte Verfahren ist als Hilfsmittel für die Kategorisierung anzuwenden. Die in der Methodik festgelegten Grenzwerte bzw. Vergleichskurven zur Beurteilung des Handlungsbedarfs wurden auf Grundlage der existierenden vergleichsweise geringen Datenbasis hergeleitet und festgelegt. Es wird empfohlen, die aus der Anwendung gewonnenen Erfahrungen für eine Fortschreibung des Verfahrens nach der Einführungsphase und ggf. nach weiteren 5 bis 8 Jahren zu nutzen.
Um die Sicherheit der Straßentunnel zu gewährleisten, werden mehr als 400 m lange Tunnel ständig durch eine Tunnelleitzentrale überwacht. Die dort eingehende Flut von Einzelinformationen, wie Kamerabilder und zahlreiche Sensordaten, muss permanent durch das Personal erfasst und beurteilt werden. Das Projekt ESIMAS (Echtzeit-Sicherheits-Management-System für Straßentunnel) wird neue Wege aufzeigen, um die Leitstellenmitarbeiter zu unterstützen. Auf Grundlage der Datenanalyse und -bewertung von ESIMAS können zukünftig sicherheitsrelevante Ereignisse, wie ein Brand im Tunnel, zuverlässig und rechtzeitig erkannt werden. Im Ernstfall soll ESIMAS dem Leitzentralenpersonal sowie den Einsatz- und Rettungsdiensten Handlungsempfehlungen zur Ereignisbewältigung zur Verfügung stellen. Auf Basis dieser Handlungsempfehlungen können Maßnahmen schnellstmöglich und gezielt durchgeführt werden. Der innovative Ansatz von ESIMAS besteht in der ganzheitlichen Betrachtung aller Einzelinformationen und ihrer automatischen Auswertung und Bewertung. Hierdurch ist eine schnellere Reaktion der Leitstelle zum Schutz der Verkehrsteilnehmer möglich.
In Germany road tunnels on major roads which are longer than 400 m have to be monitored permanently. For that purpose the tunnels are equipped with a multitude of monitoring and detection systems whose data and messages are transmitted to tunnel control centres. Due to the higher traffic density, the increasing number of tunnels to be monitored and road users" demand of higher safety and security levels, the strains on operating staff of tunnel control centres have continuously been growing. Therefore, innovative approaches have been developed in two recent German research projects: RETISS " Real Time Security Management System, and ESIMAS " Real-time Safety Management System for road Tunnels. Both systems are designed to allow faster and more efficient reaction of tunnel operators in order to maintain the capacity and availability of transport infrastructures but also to improve the safety and security of road users.
Die Regelwerke RABT 2006 beziehungsweise 2004/54/EG legen heute die einheitlichen Mindestanforderungen an die Ausstattung und den Betrieb von Straßentunneln in Deutschland fest. Wird von diesen Anforderungen in begründeten Fällen abgewichen oder weist ein Tunnel eine besondere Charakteristik auf, so ist durch eine Risikoanalyse aufzuzeigen, dass durch den Einsatz alternativer Maßnahmen ein vergleichbar hohes Sicherheitsniveau gewährleistet werden kann. Um die in den Richtlinien genannte Forderung zu konkretisieren und eine praktische Umsetzung zu ermöglichen, wurde eine quantitative Methodik zur Sicherheitsbewertung von Straßentunneln entwickelt. Als Grundlage für die Herleitung der erforderlichen statistischen Eingangsgrößen wurden im Rahmen einer Unfallanalyse für 80 Tunnel rund 1'000 Unfallprotokolle spezifisch ausgewertet. Mit der Methodik können die Vorgaben für eine einheitliche und vergleichbare Durchführung von Sicherheitsbeurteilungen geschaffen werden. Bei der Entwicklung der Methodik wurden die Erfahrungen aus anderen, vergleichbaren Sicherheitsbereichen herangezogen und die entsprechenden Ansätze auf ihre Tauglichkeit hin für eine Anwendung im vorliegenden Kontext geprüft. Daneben wurden die aktuellen Entwicklungen und methodischen Ansätze zur Umsetzung der Forderungen gemäß Artikel 13 der Richtlinie 2004/54/EG im Ausland analysiert und die entsprechenden Erkenntnisse soweit sinnvoll in die Entwicklung der Methodik einbezogen. Die Methodik basiert in ihren Grundsätzen und dem gewählten Vorgehen auf einem risikoorientierten Ansatz, der er in verschiedenen Ländern zu unterschiedlichsten Sicherheitsfragen bereits erfolgreich angewandt wird. Bei der Erarbeitung der Methodik wurde darauf geachtet, dass der gewählte Ansatz neben der Erarbeitung der wissenschaftlichen Grundlagen im Hinblick auf die künftige Anwendung auch einen engen praxisorientierten Bezug aufweist. Die Methodik gibt aber bewusst nicht zu allen Aspekten "rezeptartige" Vorgaben vor, sondern definiert einen Rahmen, innerhalb dessen die konkrete Anwendung durchzuführen ist. Für das Regelwerk wurden Empfehlungen zum weiteren Vorgehen abgegeben sowie weiterer Forschungsbedarf aufgezeigt, welcher insbesondere die Aspekte der Risikobewertungskriterien sowie der Datengrundlagen betrifft. Um die Suche innerhalb des Berichtes zu erleichtern, wird dieser zusätzlich noch einmal auf der beiliegenden CD angeboten. Sie enthält darüber hinaus die Anlagen und den Bericht in englischer Sprache.
Um das oft komplexe Zusammenwirken von einzelnen betriebstechnischen Einrichtungen zur Detektion von Brandereignissen und Steuerung der Lüftung sowie den übrigen sicherheitstechnischen Systemen überprüfen zu können, werden nach ZTV-ING im Rahmen der Abnahme Funktionsprüfungen gefordert, indem Brände simuliert und die zu prüfenden Größen messtechnisch erfasst werden. Reale Brandversuche in Straßentunnel sind jedoch unter dem Aspekt der Wirtschaftlichkeit und des notwendigen technischen Aufwandes zur Erfassung der interessierenden Branddaten und zum Schutz der betriebstechnischen Einrichtungen sowie des Bauwerkes in der Anzahl der Szenarien wie in der Energiefreisetzung begrenzt. Die unter vertretbarem Aufwand erreichbare Brandleistung beträgt zirka 5 MW. Um dennoch Aussagen über das Verhalten des Systems bei höheren Brandleistungen und unterschiedlichen, realen Randbedingungen (Brandorte, Verkehrsbelegung, Windverhältnisse und so weiter.) zu erhalten, sollten Simulationsrechnungen durchgeführt werden können. Diese erlauben eine sehr flexible Modellierung des Tunnels und die Ermittlung sämtlicher relevanter Größen an beliebigen Punkten im Untersuchungsgebiet. Da die Randbedingungen sehr tunnelspezifisch sein können, sind zur Kalibrierung entsprechender Rechenprogramme Eingangswerte aus standardisierten Brandversuchen hilfreich. Ziel der Untersuchung war es daher, mit Hilfe eines geeigneten Rechenprogramms Anforderungen an einen Brandversuch hinsichtlich der notwendigen Daten zur Funktionsüberprüfung und zur Brandhochrechnung zu definieren. Zur Durchführung der Simulationsrechnungen wurde der "Fire Dynamics Simulator" (FDS) verwendet, der über das National Institute of Standards and Technology als 0pen Source-Rechenprogramm erhältlich ist. Grundlage des Rechenprogramms bilden die Gleichungen für die Massen-, Impuls-, Energie- und Stofferhaltung, die im 3-dimensionalen Raum numerisch gelöst werden und als Ergebnis Geschwindigkeits-, Temperatur- und Konzentrationsfelder bereitstellen. Im Rahmen dieser Untersuchung wurden verschiedene Versuchsreihen des Memorial-Tunnel-Fire-Ventilation-Test-Program (MTFVTP) zur Verifizierung der Rechenergebnisse herangezogen. Die vergleichende Gegenüberstellung der einen Brand charakterisierenden Größen Geschwindigkeit und Temperatur ergaben eine überwiegend gute Übereinstimmung der Messwerte aus den Brandversuchen mit den Simulationsergebnissen. Basierend auf den Berechnungen zu den Temperatur- und Geschwindigkeitsverteilungen wurden schließlich unter den Aspekten der Funktionsüberprüfung der betriebstechnischen Einrichtungen und der Erfassung von Eingangsgrößen für Simulationsrechnungen Anforderungen zur Versuchsanordnung, Branddauer, Brandgut und Erfassung der relevanten Messgrößen im Längs- und Querschnitt sowie Anforderungen zu Schutzvorkehrungen abgeleitet. Die Untersuchung hat gezeigt, dass die Definition "eines" Standardbrandversuchs nicht zweckmäßig ist, da die Zielsetzungen sich zu sehr unterscheiden. Dagegen konnten konkrete Grundlagen und Empfehlungen zur Festlegung standardisierter Brandversuche für die gemäß RABT und ZTV-ING vorgesehenen Funktionstests erarbeitet werden. Außerdem konnte gezeigt werden, dass das für die Simulationsrechnungen verwendete Programm FDS derzeit ein adäquates Instrument bildet, nicht nur bezüglich der Simulation von Tunnelbränden unter realen Gegebenheiten und der resultierenden Strömungs- und Temperaturverhältnissen sowie Rauchkonzentrationen, sondern auch in Bezug auf die benötigte Rechner- und Speicherkapazität.
Improving the security of critical road infrastructure is a major task for owners and operators of tunnels and bridges in the European TEN-T Network (Trans-European Networks of Transport) (European Parliament and Council 1996). Up to now, there has not been a systematic procedure for identifying and assessing critical infrastructure objects and selecting appropriate protection measures. The EC FP7 project SeRoN for the first time presents an innovative methodology in order to support road owners and operators in handling this complex task. This paper describes the methodology and project results in detail by giving an introduction into its practical application.
Im Vorhaben wurde das Verhalten von offenporigen Fahrbahnbelägen in Bezug auf brennbare Flüssigkeiten im Vergleich zu dichten Fahrbahnoberflächen untersucht und analysiert inwieweit die speziellen Eigenschaften von offenporigen Asphalten Auswirkungen auf die Sicherheitsannahmen für risikobasierte quantitative Untersuchungen für Tunnel oder teilgeschlossene Bauwerke aufweisen. Hierzu wurden umfangreiche Versuche an großflächigen Versuchsplatten (80 x 80 cm) mit Deckschichten aus offenporigem Asphalt (PA) und Splitt-Mastix-Asphalt (SMA) sowie ergänzende CFD-Berechnungen durchgeführt. Die Ermittlung des Durchfluss- und Ausbreitverhaltens erfolgte bei konstanter Flüssigkeitsaufgabe auf die Versuchsplatten und Fassung der an den Plattenseiten austretenden Flüssigkeit in Messzylindern. Über diese wurde für die verschiedenen Deckschichten das zeitliche und räumliche Ausbreitungsverhalten analysiert. Die Ermittlung des Einflusses einer Oberflächenneigung erfolgte durch Variation der Ableitversuche mit zwei unterschiedlichen Plattenneigungen. Die Ermittlung des Brandverhaltens erfolgte in zwei Schritten. In einer ersten Versuchsreihe wurden auf die Platten verschiedene zuvor definierte Kraftstoffmengen aufgegeben und anschließend gezündet, so dass bei Brandbeginn beim SMA ein übersättigter und beim PA, je nach Aufgabemenge ein übersättigter, gesättigter oder teilgesättigter Asphalt vorlag. In der zweiten Versuchsreihe erfolgte während des Abbrands ein kontinuierlicher Benzinzufluss. Die Analyse der umfangreichen Daten aus den Versuchsreihen ermöglichte die Bereitstellung detaillierter Eingangsgrößen für die CFD-gestützte Modellierung und Validierung des zeitlichen und räumlichen Ausbreitungs- und Abbrandverhaltens für die betrachteten Fahrbahnoberflächen. In der sich anschließenden Wirkungsanalyse wurden die sich aus der Modellierung ergebenden Auswirkungen der unterschiedlichen Fahrbahnoberflächen (PA und SMA) ermittelt und unter Anwendung des Verfahrens für die Bewertung der Sicherheit von Straßentunneln miteinander verglichen. Der quantitative Sicherheitsvergleich zeigte, dass offenporige Asphaltbeläge in Einhausungs- und Tunnelbauwerken unter risikoorientierten Gesichtspunkten nicht ungünstiger als dichte Fahrbahnbeläge einzustufen sind.
Mit der Einführung der RABT 2006 bzw. der Veröffentlichung der EABT 2019 werden die Vorgaben in der EU-Richtlinie 2004/54/EG zur Anwendung von Risikoanalysen bei der Bewertung der Sicherheit von Straßentunneln in das nationale Regelwerk überführt. Danach werden Risikoanalysen erforderlich, wenn ein Straßentunnel entweder eine besondere Charakteristik aufweist oder in seiner geometrischen Ausbildung bzw. sicherheitstechnischen Ausstattung von den Vorgaben im Regelwerk abweicht.
Seit der Veröffentlichung der aktuellen Methodik zur Sicherheitsbewertung von Straßentunneln gemäß BASt-Heft B66 „Sicherheitsbewertung von Straßentunneln“ im Jahr 2009 liegen zwischenzeitlich umfangreiche Erkenntnisse bei der Umsetzung des Verfahrens und der praktischen Anwendung in risikoanalytischen Untersuchungen vor. Des Weiteren wurden in dem Fachbereich zahlreiche Forschungsprojekte zu speziellen Fragestellungen durchgeführt und wesentliche neue Erkenntnisse zu bisher unberücksichtigten Parametern gewonnen. Sowohl das methodische Vorgehen als auch grundlegende Parameter und Annahmen der Methodik entsprechen daher nicht mehr dem aktuellen Stand der Technik. Aus den oben genannten Gründen ist es erforderlich, die Bewertungsmethodik zu analysieren und zweckmäßige Adaptierungsvorschläge festzulegen.
Der entwickelte Adaptierungsvorschlag für die Bewertungsmethodik behandelt die folgenden Anpassungen im Zuge der Risikobewertung, der Häufigkeitsermittlung, sowie der Schadensausmaßermittlung für Kollisionen und Brände im Tunnel.
Zur Risikobewertung wurde anstelle des absoluten Bewertungskriteriums innerhalb von Summenkurven im Häufigkeits-Ausmaßdiagramm ein relativer Ansatz implementiert, bei dem ein zu untersuchen-der Tunnel einem richtlinienkonformen theoretischen Tunnel gegenübergestellt wird. Dafür war es erforderlich die Rahmenbedingungen für die Festlegung eines solchen Referenztunnels für wesentliche Tunnelparameter zu definieren.
Der Adaptierungsvorschlag in der Häufigkeitsanalyse beinhaltet die Aktualisierung von Ereignisraten (Unfallrate, Brandrate) aufgrund von aktuellen Auswertungen der bundesweiten Ereignisdatenbank, der Festlegung von Einflussfaktoren auf die Unfallhäufigkeit im Tunnel, sowie eines Vorschlages zur Aktualisierung der Struktur des Ereignisbaumes inklusive dessen relativen Häufigkeiten.
Der Adaptierungsvorschlag für das Schadensausmaßmodell beinhaltet Neuerungen sowohl bei der Analyse der Auswirkungen von Kollisionen, als auch von Bränden im Tunnel. Mit Hilfe des Nilsson Power Modells kann fortan der Einfluss der Geschwindigkeit auf das Schadenausmaß nach Kollisionen abgebildet werden. Außerdem wurden für Wirkungsmodelle zur Abschätzung von Brandfolgen entsprechende Parameter und Randbedingungen festgelegt. Fokus dabei war die Festlegung von detaillierten Brandkurven und der zugehörigen Zeitschiene, die Implementierung eines akkumulations-basierten Fluchtmodells sowie Ansätze zur realitätsnahen Abbildung von Selbst- und Fremdrettungsvorgängen.
Der ganzheitliche Adaptierungsvorschlag basiert auf einer aktuellen Auswertung der Tunnelereignisse in Deutschland sowie dem Stand der Wissenschaft und Technik bei der Bewertung von Personenrisiken im Tunnel. Durch Implementierung der vorgeschlagenen Anpassungen ist es fortan möglich, die Risiken im Tunnel realitätsnaher zu analysieren und eine Vielzahl von Sicherheitsmaßnahmen besser zu bewerten.