Refine
Keywords
- Thermal conduction (1)
- Transport area (1)
- Umwelt (1)
- Verkehrsfläche (1)
- Wärmeleitung (1)
- environment (1)
Im Rahmen des Forschungsprojektes „Erprobung einer geothermischen Bergwassernutzung am Grenztunnel Füssen“ wurde die Funktionsweise einer „direkten, passiven geothermischen Freiflächentemperierung“ erprobt, die in den Jahren 2019/20 auf dem Betriebshof der Autobahnmeisterei am Nordportal des Grenztunnels Füssen baulich realisiert wurde. Hierzu wird das Bergwasser des angrenzenden Grenztunnels Füssen durch bifilar verlegte Rohrregister gepumpt. Das Bergwasser erwärmt im Winter die Fahrbahnoberfläche, um diese schnee- und eisfrei zu halten, und kühlt diesen im Sommer ab, um Spurrillenbildung vorzubeugen. Das in diesem Kontext realisierte Technikum ist mit neun Freiflächen ausgestattet, wobei der Fahrbahnaufbau bei sechs Freiflächen aus Asphalt und bei den weiteren drei aus Beton besteht; jeweils eine Beton- und eine Asphaltfläche wurde als Referenzflächen nicht mit Rohrregistern versehen.
Die Testflächen variieren bezüglich der Anordnung der Rohrleitungen hinsichtlich der Tiefenlage, den Rohrachsabständen sowie bezüglich des Deckschichtaufbaus. In jedem Feld wird der Durchfluss, Vor- und Rücklauftemperatur, sowie in Feldmitte, als auch am Rand die Temperatur in zwei Sensorebenen unterhalb und oberhalb der Rohrleitungen gemessen.
Bei direkten, passiven Freiflächenheizungen wird das Wasser direkt ohne Wärmetauscher und -pumpe durch die Rohre gepumpt. Die einzig verstellbare Größe stellt der Volumenstrom dar, welcher die Geschwindigkeit des durchströmenden Wassers bestimmt. Der dimensionslose Wärmeübergangskoeffizient des strömenden Wassers zur Umgebung nimmt mit Anstieg der Geschwindigkeit zu, so dass mehr Wärme übergeben wird.
Im Rahmen des von der Bundesanstalt für Straßenwesen (BASt) geförderten Forschungsvorhabens „Erprobung einer geothermischen Bergwassernutzung am Grenztunnel Füssen“ wurde das Technikum durch das Institut für Geotechnik der Universität Stuttgart über zwei Jahre in Winter- und Sommerperioden im Einsatz getestet.
Im Fokus der Forschungsaktivitäten stand die vollständige Erfassung und Analyse der Wärmeströme temperierter Verkehrsflächen und anwendungsorientiert die Entwicklung eines möglichst effizienten und störungsfreien Betriebskonzeptes solcher Anlagen. Das Forschungskonzept für das Technikum Füssen sah vor, wesentliche Parameter der atmosphärischen Wärmeströme messtechnisch zu erfassen, daneben aber die Analyse der Messergebnisse durch numerische Simulationen zu ergänzen, die notwendig sind, um die für die Energiebilanz zur Freiflächentemperierung erforderlichen Wärmeströme, die messtechnisch nicht vollständig erfasst werden können, ergänzend abzubilden und die im weiteren als Übertragungsmodell genutzt werden sollen, um auf der Basis von Parameterstudien Empfehlungen für die Planung und den Betrieb von direkten, passiven geothermischen Flächentemperierungen auch für von dem Standort Füssen abweichende Randbedingungen abzuleiten.
In eine optimierte automatische Anlagensteuerung wurden dabei auch Wetterprognosen integriert. Im Ergebnis wurde eine Implementierungshilfe zum Einsatz von direkten, passiven Freiflächenheizungen zur Schnee- und Eisfreihaltung von Verkehrsflächen an Tunnelportalen formuliert, die einen wesentlichen Beitrag dazu leisten soll, solche nachhaltigen Konzepte zu einer Regelanwendung an Tunnelportalen zu machen.
Zur Bemessung und Auslegung der Anlage wurden alle auf die Freiflächen wirkenden, messbaren und nicht regulierbaren Wärmeströme ermittelt und quantifiziert. Zu allen Wärmeströmen gibt es, sofern alle notwendigen Daten vorliegen, analytische Berechnungsmöglichkeiten. Um das Verhalten der Anlage zu analysieren und um bei numerischen Untersuchungen Szenarien zu untersuchen, deren Randbedingungen klar definiert und messbar sind, wurden Testszenarien entwickelt. Es wurden für den winterlichen Betrieb fünf und den sommerlichen Betrieb zwei Testszenarien definiert, welche eine atypische Steuerung bei außergewöhnlichen Wetterereignissen vorsahen, um darüber hinaus auch die Grenzen der Leistungsfähigkeit der Anlage auszuloten.
Im Testszenario „Schneefall“ trat starker Schneefall ein, sodass zu den ohnehin gemessenen Daten die Dichte, Intensität und Temperatur des Schnees gemessen werden konnte. Die Auswertung weiterer Schneemessungen ergab, dass mit abnehmender Außentemperatur die wärmedämmende Wirkung des Schnees steigt .Ein weiteres Szenario zur Untersuchung der Glätte, sollte Kenntnisse zur Trägheit bzw. Reaktionszeit des Systems liefern, weshalb die Anlage über längere Zeit außer Betrieb genommen wurde, bevor die Anlage dann bei der Ankündigung von Glätte mit adäquater Vorlaufzeit aktiviert wurde.
Um die, das Verhalten der Freiflächenheizung maßgebend beeinflussenden Parameter, zu analysieren und einordnen zu können, wurden numerische Simulationen mit einem gekoppelten hydraulisch-thermischen Modell durchgeführt. Das Modell simuliert das Verhalten der Freiflächen während der Testszenarien und soll die schwer durch Messungen ermittelbaren Wärmeströme (z. B. kurzwellige Strahlung) identifizieren und quantifizieren. Die Validierung der Simulation erfolgt anhand der Messdaten, welche in Perioden erfasst wurden, in denen die äußeren atmosphärischen Randbedingungen möglichst präzise bestimmbar sind. Es zeigt sich, dass die numerisch ermittelten und gemessenen Daten gut übereinstimmen. Die Parameterstudien bestätigte u.a. die Beobachtung, dass Kupferleitungen höhere Fahrbahnoberflächentemperaturen induzieren. Ferner wurde eine Aktivierungszeit von 9 Stunden vor Ankündigung eines Wettereignisses (Glätte etc.) als ausreichend ermittelt, um die Fahrbahnoberflächen auf ein verwertbares Temperaturniveau zu heben. Es wurde auch festgestellt, dass das Abschmelzen von Schnee sehr energieintensiv ist i.e. nicht jeder Schneefall kann unmittelbar abgeschmolzen werden und es bedarf ggf. zusätzlicher Straßenräumung. Die Eisfreihaltung an der Freiflächenoberfläche konnte aber gewährleistet werden, sodass bei starkem Schneefall zwar geräumt werden muss, aber kein Salz zum Auftauen benötigt wird.
Die tatsächlich gemessenen Klimadaten stimmen nicht immer mit der Prognose überein, sodass, um auf der sicheren Seite liegend, bei der automatischen Steuerung sowohl gemessene Daten als auch Wetterprognosen berücksichtigt wurden. Die Programmierung der Steuerung erfolgte mittels eines Python Scripts. Die Fernsteuerung wurde im Winter 2021/22 erfolgreich für den Betrieb der Anlage eingesetzt. Dabei konnte gezeigt werden, dass die Flächen durchgehend eisfrei gehalten werden konnten. Alle bei Planung, Bemessung und Betrieb gewonnenen Erkenntnisse wurden in eine Implementierungshilfe integriert, welche potenziellen Anwendern die Planung von direkten, passiven Freiflächenheizungen erleichtert.
Das Forschungsvorhaben belegt, dass die an deutschen Straßentunneln anfallende Drainage- bzw. Bergwässer als nachhaltige Energiequelle u. a. für die Temperierung von Betriebsgebäuden und zur Temperierung von Verkehrs- und Betriebsflächen an den Tunnelportalen genutzt werden können. Das Konzept kann bei allen Bestandstunneln, bei denen Tunneldrainagewässer anfallen, grundsätzlich eingesetzt und die Verfahrenstechnik dabei auch nachträglich installiert werden. Die Nutzung von Drainagewässern ist grundsätzlich grundlastfähig und kann damit sowohl zur Kühlung, aber auch zum Heizen eingesetzt werden. Die Temperierung von Verkehrsflächen zur Eis- und Schneefreihaltung eine zweite besonders effiziente Nutzung, die es erlaubt, ausgewählte Bereiche vor Tunnelportalen und auf Betriebsflächen im Winter energieeffizient zu beheizen und somit den hier oft besonders aufwändigen Winterdienst (Freihaltung Fluchtwege etc.) und den Taumitteleinsatz vor Tunnelportalen zu reduzieren. Zugleich kann der bauwerksschädigende Eintrag von Streusalz und Chloriden in den Tunnel verringert und hierdurch die Lebensdauer von Tunnelschale und -ausbau verlängert werden.
In Hinsicht auf die Nutzung erneuerbarer Energien im Betrieb von Straßentunneln bieten sich hier innovative Konzepte für die Zukunft, die auch bei Bestandstunneln nachgerüstet werden können.