Refine
Keywords
- Bridge (2)
- Brücke (2)
- BIM (1)
- Damage (1)
- Key Performance Indikatoren (1)
- Lebenszyklusmanagement (1)
- Schaden (1)
- key performance indicators (1)
- life cycle management (1)
In Hinblick auf die Zustandsbeschreibung und die Beurteilung der Zielerfüllung des Lebenszyklusmanagements von Bauwerken wird zunehmend die Weiterentwicklung von Key Performance Indikatoren (KPI) bzw. Kennzahlen diskutiert. Leistungsindikatoren (Performance Indikatoren) messen diverse, für die Leistungsbeurteilung eines Ingenieurbauwerks maßgebende Eigenschaften. Sie können hierarchisch aufgebaut werden und jene auf der oberste Hierarchieebene werden als Schlüsselindikatoren bezeichnet (KPI). Die Schlüsselindikatoren zeigen, ob ein Bauwerk die Leistungsziele erfüllt.
Eine der wesentlichen Herausforderungen bei der Einführung eines Kennzahlensystems besteht einerseits in der Verknüpfung von Zielen mit Indikatoren sowie deren hierarchischer Aufbau untereinander. Andererseits gilt es, den Erfüllungsgrad der definierten Leistungsziele möglichst mit quantitativen Indikatoren zu ermitteln bzw. zu bewerten. Daher ist bei der Auswahl geeigneter Kennzahlen innerhalb des Lebenszyklusmanagements stets deren Verwendungszweck zu hinterfragen, gemäß folgendem Leitsatz:
“You can have all the indicators you want, but sooner or later you have to think about it.” (Main Roads Western Australia, 2004)
Hierbei sind auch die vorhandenen Datengrundlagen zu analysieren sowie innovative Erfassungs- und Bewertungsmethoden in den Entscheidungsprozess zu integrieren. Dies bildet die Grundlage, um den optimalen Zeitpunkt von Erhaltungsmaßnahmen, den damit verbundenen Bedarf an die finanziellen und personellen Ressourcen frühzeitig abzuschätzen sowie die langfristigen Kosten zu senken.
Im Rahmen dieses Forschungsprojektes wird eine Systematik und darauf basierend eine fachliche Konzeption für die Erstellung eines indikatorgestützten Lebenszyklusmanagementtools erarbeitet, das die bestehenden Ansätze des Verkehrsinfrastrukturmanagements unterstützt und somit eine verbesserte Nutzung der vorhandenen Ressourcen ermöglicht.
Dazu erfolgt zunächst eine Zusammenstellung der wesentlichen Grundlagen des Lebenszyklusmanagements von Bauwerken bei dem ein Schwerpunkt auf den aktuellen Entwicklungen zu innovativen Techniken der Zustandserfassung gelegt wird. Es wird anschließend der aktuelle Stand zum Einsatz von Indikatoren bei den drei Verkehrsträgern Straße, Schiene und Wasser erörtert. Die hierzu durchgeführten Literaturrecherchen wurden durch Experteninterviews und die Durchführung eines Workshops mit Infrastrukturbetreibern ergänzt. Aufbauend auf diesen Ergebnissen erfolgte schließlich die Entwicklung und Anwendung einer Methodik zur Konzeption eines verkehrsträgerübergreifenden LZM-Tools. Als Ausgangslage wurde hierbei eine von der Bundesanstalt für Straßenwesen zur Verfügung gestellte Indikatorenliste verwendet und weiterentwickelt. Das entwickelte Kennzahlensystem beinhaltet die Schlüsselindikatoren Zuverlässigkeit, Sicherheit der Nutzer und Dritter, Verfügbarkeit und Nachhaltigkeit. Die Methodik verfügt über einen modularen Aufbau, sodass durch den Austausch von einzelnen Teilmodellen verkehrsträgerspezifische Anforderungen an das Modell jederzeit berücksichtigt werden können. Die Erprobung des entwickelten Kennzahlensystems innerhalb eines Lebenszyklusmanagements wird schließlich im Rahmen einer prototypischen Anwendung exemplarisch getestet. Dazu werden die vorhandenen Datengrundlagen von ausgewählten Ingenieurbauwerken zunächst aufbereitet und in den IT-Prototypen integriert. Unter Berücksichtigung von vorhandenen Bauwerksschäden erfolgt die Beurteilung der Zuverlässigkeit der Bauwerke auf Objekt- und Netzebene mit Hilfe eines bayes’schen Ansatzes. In Abhängigkeit der Schadensart wird zudem die Sicherheit der Bauwerke für die Nutzer sowie Dritte bewertet. Die Bewertung der Verfügbarkeit erfolgt anhand von zusätzlichen Reisezeiten, die durch die vom Anwender zu definierenden Erhaltungsmaßnahmen hervorgerufen werden. Der Aspekt der Nachhaltigkeit wird sowohl auf Objekt- als auch auf Netzebene ermittelt. Auf der Objektebene werden die in Abhängigkeit der Maßnahmenart zu erwartenden CO2-Emissionen ermittelt. Auf der Netzebene hingegen erfolgt die Berechnung der zusätzlichen CO2-Emissionen anhand der zusätzlichen Reisewege aufgrund von Umleitungen in Abhängigkeit der Verkehrsmengen und -zusammensetzung. Die wirtschaftlichen Kosten berechnen sich schließlich aus der Summe der diskontierten Einzelkosten der gewählten Maßnahmenarten innerhalb eines Erhaltungsszenarios.
Aufgrund der Modularität des entwickelten IT-Tools kann eine stetige Weiterentwicklung bzw. Erweiterung des Kennzahlensystems erfolgen und weitere verkehrsträgerspezifische Anforderungen kontinuierlich ergänzt werden. Damit ist die Grundlage für ein zukünftiges indikatorengestütztes verkehrsträgerübergreifendes Lebenszyklusmanagement von Infrastrukturbauwerken geschaffen.
Die Anwendung von Building Information Modelling (BIM) im Infrastrukturmanagement wird derzeit intensiv erforscht. Aufgrund ihres individuellen Charakters, der komplexen Geometrie und der Vielzahl ihrer Be-standteile ist die automatisierte Erfassung von Brücken besonders komplex. Eine manuelle Erstellung entsprechender BIM-Modelle auf Grundlage vorhandener 2D-Pläne und Datenbanken ist angesichts der Menge und Komplexität ein erheblicher Aufwand und birgt vielfältige Herausforderungen: Fehlende, unleserliche oder widersprüchliche Plangrundlagen, undokumentierte Projektänderungen oder Erweiterungen am Bauwerk. Mit jüngsten Entwicklungen bei den 3D-Vermessungstechnologien und Fortschritten im Be-reich der Künstlichen Intelligenz ergeben sich neue Möglichkeiten, um Prozesse und Verfahren für eine automatisierte Generierung von BIM-Modellen für Brücken im Bestand zu entwickeln und diese auf reale Brückenbauwerke anzuwenden.
In diesem Forschungsprojekt wurde ein neuartiger, modularer Ansatz für die teil-automatisierte Umwandlung von Punktwolken in Ist-BIM-Modelle erarbeitet. Der Ansatz basiert auf einer Kombination von Anwendungen Künstlicher Intelligenz und heuristischen Algorithmen. Neuronale Netze wurden mit synthetischen sowie realen Datensätzen typischer Brückenelemente trainiert und an Punktwolken tatsächlicher Bauwerke getestet. Die erkannten Brückenelemente werden in ein trianguliertes Oberflächennetz umgewandelt. An-schließend können Volumenelemente mittlerer geometrischer Komplexität generiert werden. Das Endergebnis ist ein Ist-BIM-Modell einer Brücke und ihrer Elemente, angereichert mit semantischen Informationen aus einer Bauwerksdatenbank (z. B. Typ, Eigenschaft, Beziehung, Material), im standardisierten und offenen IFC-Format (Industry Foundation Classes) für den Austausch von Gebäudemodellen. Das vorgeschlagene Konzept soll als Basis für künftige, großangelegte automatisierte Erfassungskampagnen von Ist-BIM-Modellen von Brücken im Bestand für zukunftsfähige Brückenmanagementsysteme dienen.
Die Entwicklung der Feinkonzeption baut auf dem Vorläuferprojekt FE 15.0628/2016/LRB „Zuverlässigkeitsbasierte Bauwerksprüfung – Konzeption und fachliche Lösungen“ auf. Die in diesem Projekt entwickelte Konzeption zur Ermittlung der Zuverlässigkeit von Brücken mit oder ohne Berücksichtigung vorhandener Schäden wurde verfeinert und an einer großen Anzahl Beispielbauwerken angewendet. Dies erfolgte mit Hilfe eines Prototyps, in dem die Konzeption praktisch umgesetzt wurde. Bei der praktischen Umsetzung wurde der Fokus darauf gelegt, mit der konsequenten Nutzung der vorhandenen Datenbasis in SIB-Bauwerke die Skalierbarkeit des Verfahrens sicherzustellen. Die à priori Zuverlässigkeit im ungeschädigten Zustand wird aus einer Gegenüberstellung von Bemessungslasten und den heutigen Verkehrslasten ermittelt. Diese kann mit den Ergebnissen der Bauwerksprüfung aktualisiert und damit die à posteriori Zuverlässigkeit berechnet werden. Als Grundlage wurden für die wichtigsten Schadensarten die lokalen Widerstandsreduktionen in Abhängigkeit von der Schadensschwere ermittelt. Die Auswirkungen der vorhandenen Schäden auf den globalen Widerstand der Brücken und damit auf deren Zuverlässigkeit hängen zusätzlich von der Lage der Schäden am Tragwerk und deren Zusammenwirkung ab. Um dies zu berücksichtigen, wurden die möglichen Versagensmechanismen der zugrundeliegenden statischen Systeme ermittelt und die sich daraus ergebenden unterschiedlichen Anfälligkeitsbereiche der Tragwerke definiert. Sowohl die lokalen Auswirkungen einzelner Schäden als auch die Zusammenwirkung mehrerer Schäden wurden, unter Berücksichtigung der jeweils vorhandenen Unsicherheiten, in Bayes’schen Netzen abgebildet. Die Konzeption ermöglicht eine Ergänzung bzw. Weiterentwicklung der derzeitigen Praxis der Bauwerksprüfung. Mit der ursprünglichen Zuverlässigkeit und deren Verminderung aufgrund der festgestellten Schäden, kann eine bessere Beurteilung des Gesamtzustands und der Auswirkungen auf die Gebrauchstauglichkeit und Sicherheit der Brücken erfolgen. Mit dem Prototyp konnte die praktische Umsetzbarkeit gezeigt werden. Die Konzeption baut auf den bereits vorhandenen und im Rahmen der Bauwerksprüfungen standardmäßig erhobenen Daten auf. Mit geringfügigen Anpassungen an der Praxis der Bauwerksprüfung könnte die Qualität der Zuverlässigkeitsbeurteilung weiter verbessert werden.