Refine
Keywords
- Bridge (3)
- Brücke (3)
- Condition survey (3)
- Deutschland (3)
- Forschungsbericht (3)
- Germany (3)
- Research report (3)
- Zustandsbewertung (3)
- Damage (2)
- Dauerhaftigkeit (2)
Der vorliegende Bericht beschreibt Konzepte für eine intelligente Brücke auf der Grundlage einer zuverlässigkeitsbasierten Zustandsbewertung unter Berücksichtigung von Bauwerksinformationen, welche aus Prüfungen, Inspektionen und Überwachung gewonnen werden. Das Brückensystem wird durch ein Modell beschrieben, welches den zentralen Teil des Konzeptes darstellt. Das Modell wird in Schädigungsmodelle und ein Tragwerkssystem-Modell unterteilt. Dieses Modell wird a-priori durch die Eingangsdaten (welche etwa die Geometrie, die Materialien und die Verwendung der Brücke beschreiben) charakterisiert. Aus diesen ergeben sich dann auch die Ausgangsmodelle. Um die signifikanten Streuungen und Unsicherheiten adäquat abzubilden sind diese Modelle probabilistisch. Das Modell liefert eine sich kontinuierlich ändernde probabilistische Zustandsbewertung. Die Zustandsbewertung gibt eine Aussage über den Zustand und die Zuverlässigkeit des Brückensystems und seiner Bauteile und dient als Grundlage für die Planung und die Optimierung von Maßnahmen. Die Verwendung von Resultaten aus Inspektionen, Prüfungen und Überwachungen erfolgt durch eine Aktualisierung der Modellparameter. Die Aktualisierung beruht auf der Methode der Bayes'schen Aktualisierung und wird auf der Grundlage der entwickelten Klassifizierung der Bauwerksinformationen mit entsprechenden Methoden durchgeführt. Dieses Verfahren erlaubt es, alle Informationen in konsistenter Weise in ein einziges Modell einfließen zu lassen. Dabei wird die Genauigkeit und Aussagekraft der gewonnenen Daten und Beobachtungen explizit berücksichtigt. Durch die Aktualisierung der Modellparameter unter Berücksichtigung von Systemeffekten wird die Zustandsbewertung der Bauteile und des Brückensystems aktualisiert. Das ermöglicht die Planung und die Optimierung von Maßnahmen unter Berücksichtigung der Bauwerksinformationen. Auf diese Weise wird die intelligente Brücke mit Inspektionen und Überwachungen zu einem adaptiven System, welches sich Veränderungen anpassen kann.
Dieser Bericht beschreibt ein Systemmodell für eine integrale Ermittlung und Prognose der Schadens- und Zustandsentwicklung der Elemente eines Brückensystems unter Berücksichtigung von Ergebnissen aus Inspektionen und Überwachung. Das Systemmodell wurde anhand eines ausgesuchten Spannbetonüberbaus in einzelliger Kastenbauweise entwickelt. Es besteht aus zwei integralen Teilmodellen: ein Modell zur Beschreibung des Systemschädigungszustandes und ein Modell zur Beschreibung der Standsicherheit. Für die Modellierung des stochastischen Systemschädigungszustandes eines Brückensystems werden dynamische Bayes'sche Netze (DBN) vorgeschlagen. Dieser Ansatz ermöglicht es, alle relevanten Schädigungsprozesse und deren stochastische Abhängigkeiten zu berücksichtigen. Ein wesentlicher Vorteil dieses Ansatzes ist es, dass DBN ideal dafür geeignet sind, Bayes'sche Aktualisierungen auf Grundlage von Informationen aus Inspektionen und Überwachungsmaßnahme auf eine effiziente und robuste Art und Weise durchzuführen. Der DBN-Ansatz ist deshalb für die Entwicklung von Software für das Erhaltungsmanagement von alternden Brückenbauwerken, die vom Benutzer keine vertieften Kenntnisse der Zuverlässigkeitstheorie verlangt, ideal geeignet. Für die Modellierung der Standsicherheit eines alternden Kastenträgers wird vereinfachend Biegeversagen des globalen Längssystems betrachtet. Zur Berechnung der maximalen Traglast eines Kastenträgers infolge des Systemschädigungszustandes wird ein plastisch-plastisches Verfahren eingesetzt, wobei die Beanspruchungen mittels der Fließgelenktheorie unter Ausnutzung der plastischen Beanspruchbarkeit der Querschnitte des Kastenträgers ermittelt werden. Ein Kastenträger versagt, wenn sich durch die Ausbildung einer ausreichend großen Anzahl von Fließgelenken eine kinematische Kette ausbildet. Dieser Modellierungsansatz berücksichtigt Redundanzen, die sich aus der plastischen Beanspruchbarkeit der Querschnitte und der statischen Unbestimmtheit eines Kastenträgers ergeben. Zum Nachweis der praktischen Einsetzbarkeit des entwickelten Systemmodells wurde ein Software-Prototyp entwickelt, der eine intuitiv benutzbare graphische Benutzeroberfläche (Front-End) mit einem Berechnungskern (Back-End) koppelt. Die aktuelle Version des Software-Prototyps implementiert ein Modell der chloridinduzierten Bewehrungskorrosion und ein Tragwerksmodell, welches das Verfahrens der stetigen Laststeigerung zur Bestimmung der maximalen Traglast des Kastenträgers auf der Grundlage eines Finite-Elemente-Modells umsetzt. Zur Durchführung von Bayes'schen Aktualisierungen des Systemschädigungszustandes auf der Grundlage des DBN-Modells implementiert der Prototyp den Likelihood-Weighting-Algorithmus. Die entwickelte Architektur des Prototyps ermöglicht eine Erweiterung der Software um weitere Schädigungsprozesse. Der entwickelte Software-Prototyp ermöglicht Benutzern ohne vertiefte Kenntnisse der Zuverlässigkeitstheorie eine Berechnung des Einflusses von Bauwerksinformationen auf den Systemschädigungszustand und die Tragsicherheit eines Kastenträgers. Auf dieser Grundlage können effiziente Inspektions- und Überwachungsmaßnahmen identifiziert und das Erhaltungsmanagement optimiert werden.
Aktuell werden Brücken intensiv in festgelegten Zyklen untersucht, wodurch hohe Kosten entstehen, jedoch das Zusammenwirken der Konstruktionsteile und Systemabhängigkeiten nur unzureichend berücksichtigt werden. Durch eine risikobasierte Bauwerksprüfung ist es möglich, den Prüfumfang jeder Bauwerksprüfung auf Basis wissenschaftlich basierter Risikobetrachtungen auf Schadensebene festzulegen und nur bei Vorliegen einer entsprechenden Schädigungswahrscheinlichkeit zu prüfen. Hierzu wird das betrachtete Bauwerk mithilfe mehrerer Untergliederungsebenen bis zu den möglichen Schäden aufgegliedert. Für sämtliche Schäden werden auf Grundlage mechanischer oder physikalischer/chemischer Überlegungen Schädigungsmodelle definiert und für alle Schäden verschiedene Schädigungsniveaus, bezogen auf die Auswirkungen auf die Standsicherheit, Verkehrssicherheit und Dauerhaftigkeit, festgelegt. Durch eine Darstellung der Schäden mittels probabilistischer Modelle, lässt sich die Wahrscheinlichkeit, dass ein Schaden ein bestimmtes Schädigungsniveau erreicht, errechnen. Wenn die Wahrscheinlichkeit, dass ein Schaden ein bestimmtes Schädigungsniveau erreicht hat, eine zugehörige Grenzwahrscheinlichkeit erreicht, ist eine Bauwerksprüfung zur Bestätigung dieses Schadensniveaus durchzuführen. Es wird eine Systematik vorgeschlagen, die für jedes Schädigungsniveau, die Ermittlung der Grenzwahrscheinlichkeit ermöglicht. Durch die Bauwerksprüfung kann der tatsächliche Bauwerkszustand festgestellt und die Schädigungsprognose durch Einbezug dieser Erkenntnisse in die Schädigungsmodelle, angepasst werden. Durch das vorgeschlagene Modell ist es möglich, beim Umfang der Bauwerksprüfung den tatsächlichen und den prognostizierten Bauwerkszustand zu berücksichtigen. Die für die Bauwerksprüfung bereitstehenden Mittel lassen sich effizienter einsetzen und "Schwachpunkte" eines Bauwerks werden gemäß ihrer Schädigungswahrscheinlichkeit häufiger geprüft.