Refine
Keywords
- Accident (2)
- Analyse (math) (2)
- Analysis (math) (2)
- Development (2)
- Fatality (2)
- Forecast (2)
- Method (2)
- Prognose (2)
- Statistics (2)
- Statistik (2)
Institute
Die Bundesanstalt für Straßenwesen (BASt) bringt zum Ende jeden Jahres eine Prognose der Unfall- und Verunglücktenzahlen des noch laufenden Jahres heraus, um so über die Entwicklung der Verkehrssicherheit in Deutschland Bilanz ziehen zu können. Dabei wird das Unfallgeschehen nach dem Schweregrad der Konsequenzen, der Ortslage sowie Alter und Art der Verkehrsbeteiligung der Verunglückten in 27 Zeitreihen unterteilt. Zu diesem Zeitpunkt sind die Daten lediglich für die ersten acht oder neun Monate erhältlich. Um Bilanz zu ziehen, werden die Anzahlen der letzten drei oder vier Monate prognostiziert. Gesamtziel des hier beschriebenen Forschungsvorhabens ist die Optimierung der jährlichen Unfallprognosen durch Anwendung von strukturellen Zeitreihenmodellen, bei denen die Vorhersagen aus dem Trend der vorliegenden Monate, und der Dynamik der vorhergehenden Jahre abgeleitet werden. Um dem Einfluss der Witterungsverhältnisse Rechnung zu tragen, werden dabei meteorologische Variablen in das Vorhersagemodell aufgenommen. Um die Modelle zu testen, werden die endgültigen Daten der letzten 15 Jahre jeweils aus den vorläufigen Daten der ersten Monate vorhergesagt und mit den tatsächlich beobachteten endgültigen Unfall- und Verunglücktenzahlen verglichen. Die Resultate zeigen, dass im Vergleich zu den bisherigen Vorhersagen mithilfe der hier vorgestellten Modelle die Vorhersagen für 25 der 27 Reihen präziser werden. Lediglich zwei Reihen zeigen einen leichten Anstieg des Vorhersagefehlers. Beim Vergleich von Modellen mit und ohne meteorologischen Variablen zeigt sich, dass 23 der 27 Reihen besser vorhergesagt werden können, wenn man das Wetter berücksichtigt. Neben der verbesserten Vorhersage ermöglicht die Aufnahme der Wettervariablen auch eine Einschätzung, wie groß der Einfluss der Witterungsgegebenheiten auf das Unfallgeschehen ist. Es zeigt sich also, dass die Anwendung von strukturellen Zeitreihenmodellen und die Berücksichtigung von meteorologischen Variablen zu einer deutlichen Verbesserung der Vorhersagegenauigkeit führen. Die Verbesserung der Vorhersagen durch die Aufnahme von Wettervariablen bestätigt nochmals den Einfluss der Witterungsumstände auf das Unfallgeschehen.
At the end of each year, the German Federal Highway Research Institute (BASt) publishes the road safety balance of the closing year. They describe the development of accident and casualty numbers disaggregated by road user types, age groups, type of road and the consequences of the accidents. However, at the time of publishing, these series are only available for the first eight or nine months of the year. To make the balance for the whole year, the last three or four months are forecasted. The objective of this study was to improve the accuracy of these forecasts through structural time-series models that include effects of meteorological conditions. The results show that, compared to the earlier heuristic approach, root mean squared errors are reduced by up to 55% and only two out of the 27 different data series yield a modest rise of prediction errors. With the exception of four data series, prediction accuracies also clearly improve incorporating meteorological data in the analysis. We conclude that our approach provides a valid alternative to provide input to policy makers in Germany.