Refine
Keywords
- Bridge (2)
- Brücke (2)
- Autobahn (1)
- Condition monitoring (1)
- Data (1)
- Data analysis (1)
- Data collection (1)
- Daten (1)
- Datenanalyse (1)
- Datenerfassung (1)
Lagerwege von Brücken
(2021)
Der ständige Wechsel der klimatischen Einflüsse verursacht in Brücken instationäre Temperaturverteilungen. Dadurch entstehen Dehnungen im Bauwerk, die Verformungen und ggfs. Zwangsbeanspruchungen hervorrufen. Durch die Anwendung von Berechnungsmethoden und Eingangsparameter nach aktuellen Normen sollen die berechneten Lagerwege ausreichende Reserven gegenüber den tatsächlichen aufweisen. Um diese Reserven zu quantifizieren, werden Messungen an verschiedenen Brücken mit unterschiedlichen Bauweisen und Längen durchgeführt.
Die an vier Brücken über 19 Monate gemessenen Temperaturen und Lagerwege sind deutlich geringer als die Kapazität der Lager sowie der nach aktuellen Normen berechneten temperaturinduzierten Verschiebungen.
Umwelt- und Standorteinflüsse, wie einseitige Sonneneinstrahlung oder querende Gewässer unterhalb des Bauwerks, beeinflussen die oberflächliche Bauwerkstemperatur und somit die Lagerverdrehung, haben jedoch keinen nennenswerten Einfluss auf die Lagerverschiebung.
Die ermittelten Wärmeausdehnungskoeffizienten weichen zwischen -6 % und +17 % von den normativen Werten ab.
Eine Berechnung der Lagerwege mit dem Berechnungsmodell nach DIN EN 1991-1-5 und gemessenen Bauwerkstemperaturen bestätigt eine gute Übereinstimmung.
Mithilfe der Lufttemperaturen naheliegender Wetterstationen des Deutschen Wetterdiensts wurden standortbezogene Bemessungswerte der Luftschattentemperatur ermittelt. Diese Maximaltemperaturen sind um ca. 2 °C größer, während die Minimaltemperaturen um ca. -4,5 °C kleiner sind. Eine Berechnung nach DIN EN 1991-1-5 mit diesen Bemessungstemperaturen führt zu ca. 8 % größeren Lagerwegen.
Es wird empfohlen, die Bemessungswerte der Außenlufttemperatur für Deutschland kleinskaliger und mit den Klimadaten der letzten drei Jahrzehnte auszuwerten, um Abweichungen zu den gültigen Werten zu identifizieren. Auch sollten die Wärmeausdehnungskoeffizienten von weiteren Brücken anhand von Messdaten ermittelt werden, um die normativen Werte zu prüfen.
Die intelligenten Kalottenlager sind durch Messdatenanalyse, Entwicklung geeigneter Algorithmen und Implementierung einer automatisierten Auswertung ein effektiver Baustein einer „Intelligenten Brücke“. Sie liefern kontinuierlich relevante Informationen sowohl zu Eigenüberwachung, Bauwerksüberwachung als auch Einwirkungserfassung. Somit können die Ergebnisse eingebunden werden in Prognose- und Strukturmodelle und schaffen damit eine Grundlage für ein zuverlässigkeitsorientiertes und präventives Erhaltungsmanagement. Zur Selbstüberwachung der Lagerfunktionalität und des Lagerzustands werden Tagesextremwerte der Verschiebung in der ebenen Gleitfläche, der Verdrehung und des Drucks sowie akkumulierte Gleitwege und der Gleitspalt kontinuierlich ausgegeben. Zur Überwachung der Brückeneigenschaften dienen die ersten beiden Eigenfrequenzen sowie die Lagerkraft infolge ständiger Einwirkungen. Die Verkehrseinwirkung wird überwacht anhand der verkehrsinduzierten Lagerkräfte, die in einem täglichen Peak-Histogramm dem Betreiber der Intelligenten Brücke zur Verfügung gestellt werden. Die Auswahl der Sensoren, das Messwerterfassungssystem kombiniert mit den Auswertealgorithmen sind robust und liefern qualitativ hochwertige Messdaten. Z. B. werden verkehrsinduzierten Lagerkräfte mit einer Genauigkeit von ± 7 % des Fahrzeuggesamtgewichts erfasst. Im Jahresrhythmus werden die bemessungsrelevanten Quantilwerte der Lagerreaktionen ermittelt, die Aussagen zur Genauigkeit der normgemäßen Bemessung geben.
Für das Pilotprojekt „Intelligente Brücke im Digitalen Testfeld Autobahn“ wurde das Bauwerk BW 402e im Bereich des AK Nürnberg mit vier einzelnen, voneinander unabhängigen MonitoringSystemen, einem Server und einer InternetVerbindung ausgestattet. Die MonitoringSysteme bestehen aus zwei intelligenten Kalottenlagern, einer intelligenten SchwenktraversenDehnfuge, dem System RTMS zur Erfassung relevanter Brückenkennwerte und Verkehrsbelastungen und einem drahtlosem Sensornetz zur Erfassung von Bauwerkseigenschaften und Wetter. Während der fünfjährigen Projektlaufzeit wurde der Betrieb und die Funktionsfähigkeit der Anlage sichergestellt, sodass die Systeme Datenerfassungsquoten zwischen 70 % und 97 % erreichten. Alle Systeme verarbeiten die Sensordaten automatisiert auf der lokal installierten Hardware zu relevanten Kenngrößen, die den Zustand des Bauwerks, einzelner Bauteile sowie Verkehrseinwirkungen und klimatische Einwirkungen erfassen. Diese aggregierten Daten sowie die Messdaten werden auf dem Server gespeichert bzw. in einer Datenbank abgelegt. Basierend auf dieser Datenbank werden die Ergebnisse kontinuierlich und mit einem möglichst geringen Zeitversatz tabellarisch und grafisch auf einer Webpage den Betreibern zur Verfügung gestellt. Zu den Ergebnissen, die auf der Webpage dargestellt werden, gehören Status der Messsysteme und Einzahlwerte zum Bauwerksstatus und Verkehr, Wetterdaten, Verkehrsdaten und Oberflächentemperaturen, Bauwerkssteifigkeit und externe Vorspannung, statistisch ausgewertete Messdaten und Auslastungsgrade, Daten der intelligenten Fahrbahnübergangskonstruktion und der intelligenten Lager, Messdaten aus dem drahtlosen Sensornetz, Störungen bzw. Ausfall der Internetanbindung und Informationen zum Bauwerk.