Abteilung Fahrzeugtechnik
Filtern
Dokumenttyp
Schlagworte
- Deformation (6) (entfernen)
Institut
- Abteilung Fahrzeugtechnik (6) (entfernen)
The goal of the project FIMCAR (Frontal Impact and Compatibility Assessment Research) was to define an integrated set of test procedures and associated metrics to assess a vehicle's frontal impact protection, which includes self- and partner-protection. For the development of the set, two different full-width tests (full-width deformable barrier [FWDB] test, full-width rigid barrier test) and three different offset tests (offset deformable barrier [ODB] test, progressive deformable barrier [PDB] test, moveable deformable barrier with the PDB barrier face [MPDB] test) have been investigated. Different compatibility assessment procedures were analysed and metrics for assessing structural interaction (structural alignment, vertical and horizontal load spreading) as well as several promising metrics for the PDB/MPDB barrier were developed. The final assessment approach consists of a combination of the most suitable full-width and offset tests. For the full-width test (FWDB), a metric was developed to address structural alignment based on load cell wall information in the first 40 ms of the test. For the offset test (ODB), the existing ECE R94 was chosen. Within the paper, an overview of the final assessment approach for the frontal impact test procedures and their development is given.
Von der Bundesanstalt für Straßenwesen (BASt) und dem Rheinisch-Westfälischen TÜV wurde 1988/89 eine Pilotstudie zum Einfluss der Korrosion auf die passive Sicherheit von Pkw bei drei unterschiedlichen Fahrzeugtypen durchgeführt. Es wurde je ein dem Alter entsprechend durchschnittlich durch Korrosion geschädigtes älteres und ein möglichst gering geschädigtes jüngeres Fahrzeug bezüglich des Korrosionszustandes vermessen und im Aufprallversuch getestet. Bei den von der BASt durchgeführten Wandaufpralltests versagten insbesondere bei den älteren Fahrzeugen sicherheitsrelevante Fahrzeugteile. Es wurde daraufhin beschlossen, die Pilotstudie mit der vorliegenden zweiten Untersuchung unter den folgenden zwei Vorgaben fortzuführen: - Verbreiterung der Datenbasis von Tests mit weiteren Fahrzeugtypen mit starker Korrosion. - Prüfung von Fahrzeugen des gleichen Typs wie in der Pilotstudie, jedoch sollten an ihnen Korrosionsschutzmaßnahmen verwirklicht sein, welche die Automobilindustrie mit Beginn der 80er Jahre in die Fertigung eingeführt hatte. Die stark korrodierten Fahrzeuge der jetzt vorliegenden Untersuchung zeigten ein ähnliches Versagensspektrum wie die stark korrodierten Fahrzeuge der Pilotstudie. An den korrosionsgeschützten und auch jüngeren Nachfolgemodellen der Fahrzeuge der Pilotstudie konnte kein korrosionsbedingter Einfluss auf die passive Fahzeugsicherheit mehr gefunden werden.
Thoracic injury is one of the predominant types of severe injuries in frontal accidents. The assessment of the injury risk to the thorax in the current frontal impact test procedures is based on the uni-axial chest deflection measured in the dummy Hybrid III. Several studies have shown that criteria based on the linear chest potentiometer are not sensitive enough to distinguish between different restraint systems, and cannot indicate asymmetric chest loading, which has been shown to correlate to increased injury risk. Furthermore, the measurement is sensitive to belt position on the dummy chest. The objective of this study was to evaluate the optical multipoint chest deflection measurement system "RibEye" in frontal impact sled tests. Therefore the sensitivity of the RibEyesystem to different restraint system parameters was investigated. Furthermore, the issue of signal drop out at the 6 th rib was investigated in this study.A series of sled tests were conducted with the RibEye system in the Hybrid III 50%. The sled environment consisted of a rigid seat and a standard production three-point seat belt system. Rib deflections were recorded with the RibEye system and additionally with the standard chest potentiometer. The tests were carried out at crash pulses of two different velocities (30 km/h and 64 km/h). The tests were conducted with different belt routing to investigate the sensitivity of chest deflection measurements to belt position on the dummy chest. Furthermore, different restraint system parameters were investigated (force limiter level, with or without pretensioning) to evaluate if the RibEye measurements provide additional information to distinguish between restraint system configurations . The results showed that with the RibEye system it was possible to identify the effect of belt routing in more detail. The chest deflections measured with the standard chest potentiometer as well as the maximum deflection measured by RibEye allowed the distinction to be made between different force limiter levels. The RibEye system was also able to clearly show the asymmetric deflection of the rib cage due to belt loading. In some configurations, differences of more than 15 mm were observed between the left and side areas of the chest. Furthermore, the abdomen insert was identified as source of the problem of signal drop out at the 6th rib. Possible solutions are discussed. In conclusion, the RibEye system provided valuable additional information regarding the assessment of restraint systems. It has the potential to enable the evaluation of thoracic injury risk due to asymmetric loading. Further investigations with the RibEye should be extended to tests in a vehicle environment, which include a vehicle seat and other restraint system components such as an airbag.
This paper provides an overview of the research work of the European Enhanced Vehicle-safety Committee (EEVC) in the field of crash compatibility between passenger cars. Since July 1997 the EC Commission is partly funding the research work of EEVC. The running period of this project will be two years. The progress of five working packages of this research project is presented: Literature review, Accident analysis, Structural survey of cars, Crash testing, and Mathematical modelling. According to the planned time schedule the progress of research work is different for the five working packages.
A means of assessing the passive safety of automobiles is a desirable instrument for legislative bodies, the automobile industry, and the consumer. As opposed to the dominating motor vehicle assessment criteria, such as engine power, spaciousness, aerodynamics and consumption, there are no clear and generally accepted criteria for assessing the passive safety of cars. The proposed method of assessment combines the results of experimental safety tests, carried out according to existing legally prescribed or currently discussed testing conditions, and a biomechanical validation of the loading values determined in the test. This evaluation is carried out with the aid of risk functions which are specified for individual parts of the body by correlating the results of accident analysis with those obtained by computer simulation. The degree of conformance to the respective protection criterion thus deduced is then weighted with factors which take into account the frequency of occurrence and the severity of the accident on the basis of resulting costs. Each of the test series includes at least two frontal and one lateral crash test against a deformable barrier. The computer-aided analysis and evaluation of the simulation results enables a vehicle-specific overall safety index as well as partial and individual safety values to be determined and plotted graphically. The passive safety provided by the respective vehicle under test can be defined for specific seating positions, special types of accident, or for individual endangered parts of the body.
To improve vehicle safety in frontal collisions, the crash compatibility between the colliding vehicles is crucial. Compatibility aims to improve both the self and partner protection properties of vehicles. Although compatibility has received worldwide attention for many years, no final assessment approach has been defined. Within the Frontal Impact and Compatibility Assessment Research (FIMCAR) project, different frontal impact test procedures (offset deformable barrier [ODB] test as currently used for Economic Commission for Europe [ECE] R94, progressive deformable barrier test as proposed by France for a new ECE regulation, moveable deformable barrier test as discussed worldwide, full-width rigid barrier test as used in Federal Motor Vehicle Safety Standard [FMVSS] 208, and full-width deformable barrier test) were analyzed regarding their potential for future frontal impact legislation. The research activities focused on car-to-car frontal impact accidents based on accident investigations involving newer cars. Test procedures were developed with both a crash test program and numerical simulations. The proposal from FIMCAR is to use a full-width test procedure with a deformable element and compatibility metrics in combination with the current offset test as a frontal impact assessment approach that also addresses compatibility. By adding a full-width test to the current ODB test it is possible to better address the issues of structural misalignment and injuries resulting from high acceleration accidents as observed in the current fleet. The estimated benefit ranges from a 5 to 12 percent reduction of fatalities and serious injuries resulting from frontal impact accidents. By using a deformable element in the full-width test, the test conditions are more representative of real-world situations with respect to acceleration pulse, restraint system triggering time, and deformation pattern of the front structure. The test results are therefore expected to better represent real-world performance of the tested car. Furthermore, the assessment of the structural alignment is more robust than in the rigid wall test.