84 Personenschäden
Filtern
Erscheinungsjahr
Schlagworte
- Conference (78) (entfernen)
Institut
- Sonstige (77)
- Abteilung Fahrzeugtechnik (4)
Recently, EuroNCAP updated the upper legform test protocols. The main objective of this study is to establish the upper legform test in KIDAS (Korean In-depth Accident Study) taking into account domestic pedestrian accident data as well as anthropometric data to protect elderly pedestrians whose average height and weight is much smaller and lighter than other age groups, especially compared to Europeans. Therefore 230 cases of pedestrian accidents from KIDAS were investigated to explore the injury severity of body regions as well as age related injury patterns. Injuries of all body regions were examined, with a special focus on injuries of abdomen and pelvic area. On the other hand, in order to explore Korea's pedestrian accident environment, national police data and KIDAS (Korean In-depth Accident Study) data were compared. The results should be taken into account in future analyses and possible improvements, such as regulations and KNCAP test protocols, of the pedestrian safety policy in Korea.
[Introduction:] A large number of road users involved in road traffic crashes recover from their injuries, but some of them never recover fully and suffer from some kind of permanent disability. In addition to loss of life or reduced quality of life, road accidents carry many and diverse consequences to the survivors such as legal implications, economic burden, job absences, need of care from a third person, home and vehicle adaptations as well as psychological consequences. Within an EU funded project MOVE/C4/SUB/2011-294/SI2.628846 (REHABIL AID) these consequences were analyzed more detailed.
While cyclists and pedestrians are known to be at significant risk for severe injuries when exposed to road traffic accidents (RTAs) involving trucks, little is known about RTA injury risk for truck drivers. The objective of this study is to analyze the injury severity in truck drivers following RTAs. Between 1999 and 2008 the Hannover Medical School Accident Research Unit prospectively documented 43,000 RTAs involving 582 trucks. Injury severity including the abbreviated injury scale (AIS) and the maximum abbreviated injury scale (MAIS) were analyzed. Technical parameters (e.g. delta-v, direction of impact), the location of accident, and its dependency on the road type were also taken into consideration. The results show that the safety of truck drivers is assured by their vehicles, the consequence being that the risk of becoming injured is likely to be low. However, the legs especially are at high risk for severe injuries during RTAs. This probability increases in the instance of a collision with another truck. Nevertheless, in RTAs involving trucks and regular passenger vehicles, the other party is in higher risk of injury.
Still correlated with high mortality rates in traffic accidents traumatic aortic ruptures were frequently detected in unprotected car occupants in the early years. This biomechanical analysis investigates the different kinds of injury mechanisms leading to traumatic aortic injuries in todays traffic accidents and how the way of traffic participation affects the frequency of those injuries over the years. Based on GIDAS reported traffic accidents from 1973 to 2014 are analyzed. Results show that traumatic aortic injuries are mainly observed in high-speed accidents with high body deceleration and direct load force to the chest. Mostly chest compression is responsible for the load direction to the cardiac vessels. The main observed load vector is from caudal-ventral and from ventral solely, but also force impact from left and right side and in roll-over events with chest compression lead to traumatic aortic injuries. Classically, the injury appeares at the junction between the well-fixed aortic arch and the pars decendens following a kind of a scoop mechanism, a few cases with a hyperflexion mechanism are also described. In our analysis the deceleration effect alone never led to an aortic rupture. Comparing the past 40 years aortic injuries shift from unprotected car occupants to today's unprotected vulnerable road users like pedestrians, cyclists and motorcyclists. Still the accident characteristics are linked with chest compression force under high speed impact, no seatbelt and direct body impact.
When assessing the consequences of accidents normally the injury severity and the damage costs are considered. The injury severity is either expressed within the police categories (slight injury, severe injury or fatal injury) or the AIS code that rates the fatality risk of a given injury. Both injury metrics are assessing the consequences of the accident directly after the accident. However, not all consequences of accidents are visible directly after the accident and the duration of the consequences are different. Besides a physiological reduction of functionality social and psychological implications such as reduced mobility options, problems to continue the original job etc. are happening. In order to assess long term consequences of accidents the MHH Accident Research Unit established a brief questionnaire that is distributed to accident involved people of the Hannover subset of the GIDAS data set approx. one year after the accident beginning with the accident year 2013. The basic idea of using a brief questionnaire (in fact only one page) is to obtain a relatively large return rate because the questionnaire appears to be simple and quickly answered. This appears to be important because it is believed that the majority of accident involved people will not report long term consequences. In order to allow a more detailed survey amongst those responders that are reporting long term consequences they are asked for a written consent for the additional questionnaire that will be distributed at a time that is not yet defined. Long term consequences are reported for all addressed areas, medical, physiological, psychological and sociological by people without injuries, with minor injuries and with severe injuries.
The incidence of side impacts was investigated from GIDAS data. Both vehicle-fixed object and vehicle-vehicle collisions were analysed as these are enclosed within the consumer testing program. Vehicle-fixed object collisions were stratified according to ESC availability. Results indicated that vehicles equipped with ESC rarely have pure-lateral impacts. An increase in oblique collisions was seen for the vehicles with ESC whereby most vehicle were driving in left curves. The analysis of vehicle-vehicle collisions developed injury risk curves were developed at the AIS3+ injury severity for the vehicle-vehicle side impacts. Results suggested that greatest injury risk occurred when a Pre Euro NCAP vehicle was struck by a Post Euro-NCAP vehicle. The remaining curves did not show different behaviour, indicating that stiffness increased have been equally combated. This was attributable to the few Post Euro-NCAP vehicles that had a deployed curtain airbag available in the sample. The integration of Euro NCAP testing has shown to improve vehicle crashworthiness for pole collisions, as those vehicles with ESC rarely incur lateral impacts.
Car occupants have a high level of mortality in road accidents, since passenger cars are the prevalent mode of transport. In 2013, car occupant fatalities accounted for 45% of all road accident fatalities in the EU. The objective of this research is the analysis of basic road safety parameters related to car occupants in the European countries over a period of 10 years (2004-2013), through the exploitation of the EU CARE database with disaggregate data on road accidents. Data from the EU Injury Database for the period 2005 - 2008 are used to identify injury patterns, and additional insight into accident causation for car occupants is offered through the use of in-depth accident data from the EC SafetyNet project Accident Causation System (SNACS). The results of the analysis allow for a better understanding of the car occupants' safety situation in Europe, thus providing useful support to decision makers working for the improvement of road safety level in Europe.
To elucidate the risk of pedestrians, bicycle and motorbike users, data of two accident research units from 1999 to 2014 were analysed in regard to demographic data, collision details, preclinical and clinical data using SPSS. 14.295 injured vulnerable road users were included. 92 out of 3610 pedestrians ("P", 2.5%), 90 out of 8307 bicyclists ("B", 1.1%) and 115 out of 4094 motorcycle users ("M", 2.8%) were diagnosed with spinal fractures. Thoracic fractures were most frequent ahead of lumbar and cervical fractures. Car collisions were most frequent mechanism (68, 62 and 36%). MAIS was 3.8, 2.8 and 3.2 for P, B and A with ISS 32, 16 and 23. AIS-head was 2.2, 1.3 and 1.5). Vulnerable road users are at significant risk for spine fractures. These are often associated with severe additional injuries, e.g. the head and a very high overall trauma severity (polytrauma).
In this study, we compared the injury severity of occupants according to the seating position and the crashing direction in motor vehicle accidents. In the driver's point of view, it was separated the seating position as "Near-side" and "Far-side". The study subjects were targeted by people who visited 4 regional emergency centers following motor vehicle accidents. Real-world investigation was performed by direct and indirect methods after patient- consent. The information of the damaged vehicle was informed by Collision Deformation Classification (CDC) code and the information of the injury of patients was informed by using the Abbreviated Injury Score (AIS) and Injury Severity Score (ISS). When the column 3 in CDC code was P, damaged at the middle part of lateral side, the average point of AIS 3 was 1.91-±1.72 in near-side and 1.02-±1.31 in far-side (p<0.01). The average point of maximum AIS (MAIS) was 2.78-±1.39 in near-side and 2.02-±1.11 in far-side (p<0.01). The average point of ISS was 15.74-±14.71 in near-side and 8.11-±8.39 in far-side (p<0.01). Also, when the column 3 in CDC code was D, damaged at the whole part of lateral side, it was significant that the average point of AIS 3 and MAIS in near-side was bigger than in far-side (p=0.02).
Injury probability functions for pedestrians and bicyclists based on real-world accident data
(2017)
The paper is focusing on the modelling of injury severity probabilities, often called as Injury Risk Functions (IRF). These are mathematical functions describing the probability for a defined population and for possible explanatory factors (variables) to sustain a certain injury severity. Injury risk functions are becoming more and more important as basis for the assessment of automotive safety systems. They contribute to the understanding of injury mechanisms, (prospective) evaluation of safety systems and definition of protection criteria or are used within regulation and/or consumer ratings. In all cases, knowledge about the correlation between mechanical behavior and injury severity is needed. IRFs are often based on biomechanical data. This paper is focusing on the derivation of injury probability models from real world accident data of the GIDAS database (German In-depth Accident Study). In contrast to most academic terms there is no explicit term definition or definition of creation processes existing for injury probability models based on empirical data. Different approaches are existing for such kind of models in the field of accident research. There is a need for harmonization in terms of the used methods and data as well as the handling with the existing challenges. These are preparation of the dataset, model assumptions, censored/unknown data, evaluation of model accuracy, definition of dependent and independent variable, and others. In the presented study, several empirical, statistical and phenomenological approaches were analyzed regarding their advantages and disadvantages and also their applicability. Furthermore, the identification of appropriate prediction parameters for the injury severity of pedestrians has been considered. Due to its main effect on injuries of pedestrians and bicyclists, the importance of the secondary impact has also been analyzed. Finally, the model accuracy, evaluated by several criteria, is the rating factor that gives the quality and reliability for application of the resulting models. After the investigation and evaluation of statistical approaches one method was chosen and appropriate prediction variables were examined. Finally, all findings were summarized and injury risk functions for pedestrians in real world accidents were created. Additionally, the paper gives instructions for the interpretation and usage of such functions. The presented results include IRFs for several injury severity levels and age groups. The presented models are based on a high amount of real world accidents and describe very well the injury severity probability of pedestrians and bicyclists in frontal collisions with current vehicles. The functions can serve as basis for the evaluation of effectiveness of systems like Pedestrian-AEB or Bicycle-AEB.