92 Fahrzeugkomfort
Refine
Document Type
- Book (1)
- Conference Proceeding (1)
Language
- English (2) (remove)
Keywords
- Bildschirm (2)
- Ergonomics (2)
- Kamera (2)
- Perception (2)
- Rear view mirror (2)
- Rückspiegel (2)
- Safety (2)
- Sensor (2)
- Sicherheit (2)
- Test (2)
- Versuch (2)
- Visual display (2)
- Wahrnehmung (2)
- Camera (1)
- Deutschland (1)
- Ergonomie (1)
- Forschungsbericht (1)
- Germany (1)
- Mensch Maschine Verhältnis (1)
- Research report (1)
- Technologie (1)
- Technology (1)
- Video camera (1)
Camera-monitor systems (CMS) can be used in motor vehicles to display the driver's rear view on a monitor mounted inside the vehicle. This also offers the possibility of replacing conventional exterior mirrors with suitable CMS and thereby implementing new design concepts with aerodynamic advantages. However, as exterior mirrors are safety-relevant vehicle parts for securing the driver's indirect rear view (requirements specified in UN Regulation No. 46), the question arises whether CMS can provide an equivalent substitute for mirrors. In the scope of this study, CMS and conventional exterior mirrors were compared and assessed in test drives and static tests under different external conditions. On the one hand, the examination of technical aspects, and on the other hand, issues pertaining to the design of the human-machine interaction, were the objects of the study. Two vehicles were available for the trials with passenger vehicles: A vehicle, manufactured in small series, which is already equipped with CMS as sole replacement for the exterior mirrors, as well as a compact class vehicle which had a CMS retrofitted by the car manufacturer in addition to conventionally used exterior mirrors. The latter could be covered exclusively for trips with CMS. A tractor unit with semitrailer was available for the truck trials. The driver's cabin was equipped with a CMS system developed by the vehicle manufacturer. In general, it was shown that it is possible to display the indirect rear view sufficiently for the driver, both for cars and trucks, using CMS which meet specific quality criteria. Depending on the design, it is even possible to receive more information about the rear space from a CMS than is possible with mirror systems. It was also shown that the change from mirrors to CMS requires a certain period of familiarisation. However, this period is relatively short and does not necessarily result in safety-critical situations.
Within the automotive context camera monitor systems (CMS) can be used to present views of the traffic situation behind the vehicle to the driver via a monitor mounted inside the cabin. This offers the opportunity to replace classical outside rearview mirrors and therefore to implement new design concepts, aerodynamically optimized vehicle shapes and to reduce the width of the vehicle. Further, the use of a CMS offers the potential to implement functionalities like warnings or situation-adaptive fields of view that are not feasible with conventional rearview mirrors. Despite these potential advantages, it is important to consider the possible technical constraints of this technology and its effect on driver perception and behavior. On the technical side next to the field of view and die robustness of die system, aspects as its functionality at day and night as well as under varying weather conditions should be object to scientific investigation. Concerning human machine interaction, it has to be considered, that the perception of velocities and distances of approaching vehicles might be different for CMS as compared to conventional rearview mirrors and potential influences of factors as the Position of the displays or drivers' age should be taken into account. In order to shed light on these and further open issues, BASt is currently conducting a study that will cover the use of CMS under controlled conditions as well in real traffic. The first part of the study will focus on passenger cars, while in a second step the empirical investigation will be extended to heavy goods vehicles, where the potentials as well as the limitations of CMS might differ considerably. The presentation will cover the first part, with regard to the experimental design, implementation and initial results if already available.