Refine
Document Type
- Conference Proceeding (13)
- Part of a Book (2)
- Article (1)
- Book (1)
- Report (1)
Keywords
- Prüfverfahren (9)
- Test method (9)
- Driver assistance system (8)
- Fahrerassistenzsystem (7)
- Fußgänger (7)
- Pedestrian (7)
- Radfahrer (6)
- Collision (5)
- Cyclist (5)
- Safety (5)
Institute
Fahrdynamikregelungen für Zweispurfahrzeuge haben in der letzten Dekade stark dazu beigetragen, die Getötetenzahlen im Straßenverkehr auf einen seit dem zweiten Weltkrieg nicht gekannten Tiefststand zu senken. Die Getötetenzahlen bei Einspurfahrzeugen, speziell Motorrädern, sind im selben Zeitraum bei weitem nicht im selben Maße gesunken. Zwar existieren für Motorräder ABS-Bremssysteme und Antriebsschlupfregelungen, aber darüber hinaus gehende technische Lösungen zur Stabilisierung des Motorrads sind nicht bekannt. Ziel dieser Arbeit ist es, abzuschätzen, ob Fahrdynamikregelungen für Motorräder einerseits technisch möglich sind und andererseits zur deutlichen Senkung der Unfallzahlen von Motorrädern beitragen können. Aus einer Analyse des Unfallgeschehens wurden für zukünftige Fahrdynamikregelungen ungebremste Kurvenunfälle durch ßberschreiten der maximalen Querbeschleunigung und durch Reibwertsprünge (wie beispielsweise glatte Fahrbahnabschnitte, Sand, ßl, Bitumen und dergleichen) als relevante Unfalltypen identifiziert und als Hauptszenarien für potenzielle Fahrdynamikregelsysteme herangezogen. Ihr Anteil am Unfallgeschehen von Motorrädern wurde mit etwa 4 bis 8 % abgeschätzt. Dazu wurden Motorradexperten nach ihren bisher erlebten Unfällen befragt und die Unfälle einer großen Unfalldatenbank im Detail untersucht. Die beiden Grundszenarien wurden mittels Simulationen und Fahrversuchen hinsichtlich besonderer Erkennungsmerkmale untersucht. Dabei erwies sich die Schwimmwinkelgeschwindigkeit des Fahrzeugs als robustes Kriterium zur Erkennung beginnender ungebremster Kurvenunfälle. ßhnlich große Schwimmwinkelgeschwindigkeiten wurden bei einer Vielzahl von unkritischen Fahrten nicht gefunden. Die Beeinflussbarkeit der untersuchten kritischen Fahrsituationen wurde mit Hilfe eines Modells für die Fahrzeugbewegung während der kritischen Fahrsituationen abgeschätzt. Eine Beeinflussung des Rollmoments zum Aufrichten des Fahrzeugs ist nicht möglich, da weder die Seitenkraft am Reifen in diesen Szenarien, wie es erforderlich wäre, erhöht werden kann, noch realistisch dimensionierte Kreisel diese Stabilisierung erbringen können. Eine Beeinflussung der Schwimmbewegung ist hingegen technisch sinnvoll durch Veränderung der Seitenkräfte über Bremsschlupf an den Rädern darstellbar. Auf diese Weise kann eine Destabilisierung des gleitenden Fahrzeugs beim ßbergang von Niedrig zurück auf Hochreibwert vermieden werden. Damit lässt sich jedoch nur eine kleine Untermenge der genannten Unfallszenarien günstig beeinflussen, sodass als Ergebnis dieser Untersuchung das Potenzial von Fahrdynamikregelungen als recht gering einzuschätzen ist.
Abbiegeunfälle mit Kollisionen zwischen rechtsabbiegenden Güterkraftfahrzeugen und Fahrrädern haben in der Regel schwerwiegende Folgen für den ungeschützten Verkehrsteilnehmer. In der Vergangenheit wurde durch eine steigende Anzahl von Spiegeln das individuelle Sichtfeld des Lkw-Fahrers vergrößert und die Sicherheit für ungeschützte Verkehrsteilnehmer durch den Seitenunterfahrschutz verbessert. Da Abbiegeunfälle trotz der Vielzahl an Spiegeln auch heute noch geschehen, gleichzeitig aber Fahrerassistenzsysteme Einzug in viele Fahrzeugklassen gehalten haben, liegt es nahe, derartige Systeme für die Verhinderung von Abbiegeunfällen zu nutzen. Um entsprechende Systementwicklungen fördern zu können oder aber auch Systeme vorschreiben zu können, sind Anforderungen und passende Testmethoden für Abbiegeassistenzsysteme erforderlich. Ziel der BASt war es, solche Anforderungen und ein mögliches Testverfahren hierfür zu entwickeln. Ausgehend von Analysen des Unfallgeschehens wurden charakteristische Parameter und Begleitumstände von Unfällen zwischen Fahrrädern und rechtsabbiegenden Lkw identifiziert. Aus fahrdynamischen Überlegungen folgt bei den gegebenen Parametern, dass nur eine frühe, aber niederschwellige Fahrerinformation eine wirkungsvolle Assistenzfunktion zur Verhinderung der Unfälle sein kann. Für automatische Bremsungen gibt es bisher noch zu wenig Erfahrungen im Feld, und klassische, hochschwellige, aber sehr spät erfolgende Warnsignale würden durch die dann noch verstreichende Reaktionszeit keine rechtzeitige Bremsung des Lkw-Fahrers mehr hervorrufen. Basierend auf dem identifizierten Parameterraum, der zum komfortablen Anhalten erforderlichen Zeit und einem geeigneten Kinematikmodell lassen sich die räumlichen Bereiche um den Lkw definieren, in dem eine Umfelderkennung den Fahrradfahrer detektieren können muss, damit das Informationssignal durch das Assistenzsystem an den Lkw-Fahrer rechtzeitig ausgegeben wird. Aktuell wird davon ausgegangen, dass ein Abbiegeassistenzsystem, das die hier beschriebenen Prüfungen besteht, einen sehr positiven Einfluss auf das Unfallgeschehen zwischen rechtsabbiegenden Lkw und Fahrrädern haben wird.
It is commonly agreed that active safety will have a significant impact on reducing accident figures for pedestrians and probably also bicyclists. However, chances and limitations for active safety systems have only been derived based on accident data and the current state of the art, based on proprietary simulation models. The objective of this article is to investigate these chances and limitations by developing an open simulation model. This article introduces a simulation model, incorporating accident kinematics, driving dynamics, driver reaction times, pedestrian dynamics, performance parameters of different autonomous emergency braking (AEB) generations, as well as legal and logical limitations. The level of detail for available pedestrian accident data is limited. Relevant variables, especially timing of the pedestrian appearance and the pedestrian's moving speed, are estimated using assumptions. The model in this article uses the fact that a pedestrian and a vehicle in an accident must have been in the same spot at the same time and defines the impact position as a relevant accident parameter, which is usually available from accident data. The calculations done within the model identify the possible timing available for braking by an AEB system as well as the possible speed reduction for different accident scenarios as well as for different system configurations. The simulation model identifies the lateral impact position of the pedestrian as a significant parameter for system performance, and the system layout is designed to brake when the accident becomes unavoidable by the vehicle driver. Scenarios with a pedestrian running from behind an obstruction are the most demanding scenarios and will very likely never be avoidable for all vehicle speeds due to physical limits. Scenarios with an unobstructed person walking will very likely be treatable for a wide speed range for next generation AEB systems.
It is well known that most accidents with pedestrians are caused by the driver not being alert or misinterpreting the situation. For that reason advanced forward looking safety systems have a high potential to improve safety for this group of vulnerable road users. Active pedestrian protection systems combine reduction of impact speed by driver warning and/or autonomous braking with deployment of protective devices shortly before the imminent impact. According to the Euro NCAP roadmap the Autonomous Emergency Braking system tests for Pedestrians Protection will be set in force from 2016 onwards. Various projects and organisations in Europe are developing performance tests and assessment procedures as accompanying measures to the Euro NCAP initiative. To provide synthesised input to Euro NCAP so-called Harmonisation Platforms (HP-) have been established. Their main goal is to foster exchange of information on key subjects, thereby generating a clear overview of similarities and differences on the approaches chosen and, on that basis, recommend on future test procedures. In this paper activities of the Harmonisation Platform 2 on the development of Test Equipment are presented. For the testing targets that mimic humans different sensing technologies are required. A first set of specifications for pedestrian targets and the propulsion systems as collected by Harmonisation Platform 2 are presented together with a first evaluation for a number of available tools.
The ASSESS project is a collaborative project that develops test procedures for pre-crash safety systems like Automatic Emergency Braking (AEB). One key criterion for the effectiveness of e.g. AEB is reduction in collision speed compared to baseline scenarios without AEB. The speed reduction for a given system can only be determined in real world tests that will end with a collision. Soft targets that are crashable up to velocities of 80 km/h are state of the art for these assessments, but ordinary balloon cars are usually stationary targets. The ASSESS project goes one step further and defines scenarios with moving targets. These scenarios define vehicle speeds of up to 100 km/h, different collision scenarios and relative collision speeds of up to 80km/h. This paper describes the development of a propulsion system for a soft target that aims to be used with these demanding scenario specifications. The Federal Highway Research Institute- (BASt-) approach to move the target is a self-driving small cart. The cart is controlled either by a driver (open-loop control via remote-control) or by a computer (closed-loop control). Its weight is limited to achieve a good crashability without damages to the test vehicle. To the extent of our knowledge BASt- approach is unique in this field (other carts cannot move at such high velocities or are not crashable). This paper describes in detail the challenges and solutions that were found both for the mechanical construction and the implementation of the control and safety system. One example for the mechanical challenges is e.g. the position of the vehicle- center of gravity (CG). An optimum compromise had to be found between a low CG oriented to the front of the vehicle (good for driveability) and a high CG oriented to the rear of the vehicle (good for crashability). The soft target itself which is also developed within the ASSESS project will not be covered in detail as this is work of a project partner. Publications on this will follow. The paper also shows first test results, describes current limitations and gives an outlook. It is expected that the presented test tools for AEB and other pre-crash safety systems is introduced in the future into consumer testing (NCAP) as well as regulatory testing.
In the last years there has been a decline in accident figures in Germany especially for four wheeled vehicles. At the same time, accident figures for motorcycles remained nearly constant. About 17 % of road traffic fatalities in the year 2006 were motorcyclists. 33 % of these riders were killed in single vehicle crashes. This leads to the conclusion that improving driving dynamics and driving stability of powered two wheelers would yield considerable safety gains. However, the well-known measures for cars and trucks with their proven effectiveness cannot be transferred easily to motorcycles. Therefore studies were carried out to examine the safety potential of Anti Lock Braking Systems (ABS) and Vehicle Stability Control (VSC) for motorcycles by means of accident analysis, driving tests and economical as well as technical assessment of the systems. With regard to ABS, test persons were assigned braking tasks (straight and in-curve) with five different brake systems with and without ABS. Stopping distances as well as stress and strain on the riders were measured for 9 test riders who completed 105 braking manoeuvres each. Knowing the ability of ABS to avoid falls during braking in advance of a crash and taking into account the system costs, a cost benefit analysis for ABS for motorcycles was carried out for different market penetration of ABS, i.e. equipment rates, and different time horizons. The potential of VSC for motorcycles was estimated in two steps. First the kinds of accidents that could be prevented by such a system at all have been analysed. For these accident configurations, simulations and driving tests were then performed to determine if a VSC was able to detect the critical driving situation and if it was technically possible to implement an actuator which would help to stabilise the critical situation.
Within this paper different European accident data sources were used to investigate the causations and backgrounds of road traffic accidents with pedestrians. Analyses of high level national data and in-depth accident data from Germany and Great Britain was used to confirm and refine preliminary accident scenarios identified from other sources using a literature review. General observations made included that a high proportion of killed or seriously injured pedestrian casualties impacted by cars were in "dark" light conditions. Seven accident scenarios were identified (each divided into "daylight" and "dark" light conditions) which included the majority of the car front-to-pedestrian crash configurations. Test scenarios were developed using the identified accident scenarios and relevant parameters. Hypothetical parameters were derived to describe the performance of pedestrian pre-crash systems based on the assumption that these systems are designed to avoid false positives as a very high priority, i.e. at virtually all costs. As result, three "Base Test Scenarios" were selected to be developed in detail in the AsPeCSS project. However, further Enhanced Test Scenarios may be needed to address environmental factors such as darkness if it is determined that system performance is sensitive to these factors. Finally, weighting factors for the accident scenarios for Europe (EU-27) were developed by averaging and extrapolation of the available data. This paper represents interim results of Work Package 1 within the AsPeCSS project.
Accidents involving Vulnerable Road Users (VRU) are still a very significant issue for road safety. According to the World Health Organisation, pedestrian and cyclist deaths account for more than 25% of all road traffic deaths worldwide. Autonomous Emergency Braking Systems have the potential to improve safety for these VRU groups. The PROSPECT project (Proactive Safety for Pedestrians and Cyclists) aims to significantly improve the effectiveness of active VRU safety systems compared to those currently on the market by expanding the scope of scenarios addressed by the systems and improving the overall system performance. The project pursues an integrated approach: Newest available accident data combined with naturalistic observations and HMI guidelines represent key inputs for the system specifications, which form the basis for the system development. For system development, two main aspects are considered: advanced sensor processing with situation analysis, and intervention strategies including braking and steering. All these concepts are implemented in several vehicle prototypes. Special emphasis is put on balancing system performance in critical scenarios and avoiding undesired system activations. For system validation, testing in realistic scenarios will be done. Results will allow the performance assessment of the developed concepts and a cost-benefit analysis. The findings within the PROSPECT project will contribute to the generation of state -of-the-art knowledge, technical innovations, assessment methodologies and tools for advancing Advanced Driver Assistance Systems towards the protection of VRUs. The introduction of a new generation safety system in the market will enhance VRU road safety in 2020-2025, contributing to the "Vision Zero" objective of no fatalities or serious injuries in road traffic set out in the Transport White Paper. Furthermore, the test methodologies and tools developed within the project shall be considered for the New Car Assessment Programme (Euro NCAP) future roadmaps, supporting the European Commission goal of halving the road toll in the 2011-2020 timeframe.
Accidents between right turning trucks and straight driving cyclists often show massive consequences. Accident severity in terms of seriously or fatally injured cyclists that are involved is much higher than in accidents of other traffic participants in other situations. It seems clear that adding additional mirrors will very likely not improve the situation. At ESV 2015, a methodology to derive test procedures and first test cases as well as requirements for a driver assist system to address blind spot accidents has been presented. However, it was unclear if and how testing of these cases is feasible, to what extent characteristics of different truck concepts (e.g. articulated vehicles, rigid vehicles) influence the test conduction and outcome, and what tolerances should be selected for the different variables. This work is important for the acceptance of a draft regulation in the UN working group on general safety. In the meantime, three test series using a single tractor vehicle, a tractor-semitrailer combination and a rigid vehicle have been conducted. The test tools (e.g. surrogate devices) have been refined. A fully crashable, commercially available bicycle dummy has been tested. If used correct, this dummy does follow a straight line quite precisely and it does not cause any damage to the truck under test in case of accidental impact. The dummy specifications are freely available. During testing, the different vehicle categories resulted in different trajectories being driven. Articulated vehicle combinations did first execute a turn into the opposite direction, and on the other hand, single tractor vehicles did behave comparable to passenger cars. A possible solution to take these behaviors into account is to require the vehicles to drive through a corridor that is narrow for a precise straight-driving phase and extends during the turn. Other investigated parameters are the dummy and vehicle speed tolerances. The results from this research make it possible to draft a regulation for a driver assistance system that helps to avoid blind spot accidents: test cases have been refined, their feasibility has been checked, and corridors for the vehicles and for important parameters (e.g. test speeds) have been set. The test procedure is applicable to all types of heavy goods vehicles. In combination with the accidentology (ESV 2015 paper), the work provides the basis for a regulation for such an assistance system.
Systeme der aktiven Fahrzeugsicherheit, insbesondere Notbremsassistenzsysteme und automatische Notbremssysteme, haben in den letzten zwei Dekaden große technische Fortschritte gemacht, und das im Wesentlichen ohne "Druck" von Gesetzgeber oder unabhängigen Testorganisationen " diese können aber durch passende Anforderungen den Vormarsch der Systeme in die Breite und die Ausnutzung von ansonsten für den Hersteller vielleicht nicht wirtschaftlichen Potentialen unterstützen. Dieser Bericht hat das Ziel, einen Überblick über die kommenden Anforderungen an Schutzsysteme für schwächere Verkehrsteilnehmer zu geben und diese Anforderungen in den Kontext Euro NCAP (=welchen Einfluss haben diese Anforderungen auf die Gesamtbewertung?) sowie Gesetzgebung (schwächere Anforderungen, aber dafür ein Markteintrittskriterium) zu stellen: - Anforderungen und Testprozeduren für Notbremsassistenz Fahrradunfälle 2018 und 2020 in Euro NCAP; - Anforderungen und Testprozeduren für Notbremsassistenz bei Nachtunfällen mit Fußgängern in Euro NCAP 2018; - Anforderungen und Testprozeduren für Abbiegeassistenzsysteme zum Schutz von Radfahrern in Unfallsituationen mit rechtsabbiegenden Lkw innerhalb der Fahrzeugtypgenehmigung.