Refine
Keywords
- Boden (3)
- Forschungsbericht (2)
- Prüfverfahren (2)
- Research report (2)
- Soil (2)
- Achse (math) (1)
- Axis (1)
- Baustoff (1)
- Behaviour (1)
- Bewertung (1)
Im Hinblick auf das Lösen werden Boden und Fels nach DIN 18300 beschrieben. Dabei werden bindige Bodenarten in Abhängigkeit von ihrer Konsistenz in unterschiedliche Bodenklassen unterteilt. Bodenarten von leichter bis mittlerer Plastizität und weicher bis halbfester Konsistenz werden der Bodenklasse 4 zugeordnet. Ausgeprägt plastische Tone von weicher bis halbfester Konsistenz gehören der Bodenklasse 5 an. Bodenarten von fester Konsistenz sind der Bodenklasse 6 zuzuordnen. Die Grenze zwischen halbfester und fester Konsistenz ist dabei über die Schrumpfgrenze definiert, die nach DIN 18122-2 bestimmt wird. Da vor allem bei leichtplastischen Böden der Wassergehalt an der Schrumpfgrenze häufig oberhalb des Wassergehaltes an der Ausrollgrenze liegt, kommt es bei der Einordnung bindiger Böden in die Bodenklassen der DIN 18300 häufig zu Unklarheiten, was zu Streitfällen zwischen Auftragnehmer und Auftraggeber führen kann. Das Ziel des Forschungsvorhabens war es deshalb, ein geeigneteres Kriterium zur Einordnung halbfester und fester Böden in die Bodenklassen der DIN 18300 zu erarbeiten und dazu eine Versuchstechnik zu entwickeln. In einem ersten Schritt wurde das Schrumpfverhalten bindiger Böden analysiert und die Versuchstechnik zur Bestimmung der Schrumpfgrenze untersucht. Es hat sich gezeigt, dass bei Böden mit einer Plastizitätszahl IP < 18 % der Wassergehalt an der Schrumpfgrenze in der Regel oberhalb des Wassergehalts an der Ausrollgrenze liegt. Anhand von Untersuchungen zum Schrumpfverhalten an Proben, die bei unterschiedlichen Spannungen vorbelastet worden waren, wurde ausserdem festgestellt, dass der Wassergehalt an der Schrumpfgrenze mit zunehmender Vorbelastung abnimmt. Diese Untersuchungen haben damit bestätigt, dass anhand der nach DIN 18122-2 ermittelten Schrumpfgrenze keine eindeutige Zuordnung in die Bodenklassen 4 und 6 bzw. 5 und 6 möglich ist. Deshalb wurden im Folgenden Untersuchungen zu anderen Kriterien zur Unterscheidung zwischen halbfesten und festen Böden durchgeführt. Hierzu wurden zunächst Untersuchungen zur einaxialen Druckfestigkeit durchgeführt. Da das Herausarbeiten von ungestörten Probekörpern im relevanten Konsistenzbereich aber mit großen Schwierigkeiten verbunden ist, kann die Verwendung der einaxialen Druckfestigkeit zur Einordnung der Bodenklassen nicht empfohlen werden. Im Rahmen des Forschungsvorhabens wurden daher im weiteren Verlauf Untersuchungen zu einem einfach durchzuführenden Versuch durchgeführt, der eine Unterscheidung von halbfestem und festem Boden auf Grundlage der Festigkeit ermöglicht. Dazu wurden an aufbereiteten Böden Eindringversuche mit einer Proctornadel und einer Konusspitze durchgeführt. Die Versuchsergebnisse belegen, dass ein klarer Zusammenhang zwischen der Konsistenz und dem Eindringwiderstand besteht und dass eine Bewertung der Festigkeit mit Hilfe dieser Versuche prinzipiell möglich ist. Zur Festlegung konkreter Werte für eine Unterscheidung der Bodenklassen 4, 5 und 6 gemäß DIN 18300 sind jedoch weitere Untersuchungen erforderlich.
Die bodenmechanischen Eigenschaften von feinkörnigen Böden und gemischtkörnigen Böden mit Feinkornanteilen über 15 M.-% werden maßgeblich von der Konsistenz und der Plastizität des Feinkorns bestimmt. Mittel- und langfristig können an Erdbauwerken, die aus diesen Bodenarten errichtet wurden, Schäden entstehen, wenn Wasserzutritte eine Verringerung der Konsistenz der feinkörnigen Anteile bewirken. Um eine verminderte Scherfestigkeit, Sackungen und Setzungen zu vermeiden, wurden in den ZTV E-StB 09 Verdichtungsanforderungen festgelegt, die neben dem Verdichtungsgrad auch den Luftporenanteil beinhalten. Im Rahmen der vorliegenden Forschungsarbeit sollte untersucht werden, welchen Einfluss der Luftporenanteil auf das Verformungsverhalten der o.g. Böden hat und inwieweit eine Verschärfung der Anforderungen an den Luftporenanteil eine Verbesserung der dauerhaften Tragfähigkeit und der Gebrauchstauglichkeit unter Berücksichtigung eines erhöhten Verdichtungsaufwandes bewirkt. Es wurde zunächst herausgearbeitet, welche Anforderungen hinsichtlich des Luftporenanteils bereits bestehen und inwieweit der Luftporenanteil als Verdichtungsanforderung geeignet ist. Der Luftporenanteil wird hierbei lediglich in Deutschland und Großbritannien als Verdichtungsanforderung genannt. Anhand von fünf Versuchsböden, die nach DIN 18196 den Bodengruppen UL, TM, TA, SU* und GU* zuzuordnen sind, wurde anschließend das Last-Verformungsverhalten bei oedometrischer Belastung und bei Wasserzutritt bei unterschiedlichen Spannungsniveaus untersucht. Die weiteren Laboruntersuchungen umfassten Triaxial- und Wasserdurchlässigkeitsversuche. An einem Probefeld wurden Feldversuche zur Entwicklung des Luftporenanteils bei einer zunehmenden Anzahl an Walzenübergängen durchgeführt. Eindeutige Aussagen zum Einfluss des Luftporenanteils auf das Verformungsverhalten der untersuchten Böden waren anhand der Laboruntersuchungen nur schwer zu treffen. Die Streuung der Versuchsergebnisse ließ zumeist keine eindeutige Systematik hinsichtlich des Einflusses des Einbauzustandes erkennen. Überwiegend wiesen die Versuche, deren Einbaubedingungen innerhalb der nach ZTV E-StB 09 festgelegten Grenzen an Verdichtungsgrad, Wassergehalt und Luftporenanteil lagen, jedoch nur geringe Verformungen auf. Die Ergebnisse der Laboruntersuchungen belegen somit die Eignung der in den ZTV E-StB enthaltenen Verdichtungsanforderungen für Erdbaumaßnahmen. Die Notwendigkeit einer Anpassung bzw. Verschärfung der Anforderungen an den Luftporenanteil lässt sich aus den Laboruntersuchungen nicht ableiten. Bei den Feldversuchen zeigte sich, dass mit den auf der Baustelle zur Verfügung stehenden Walzenzügen eine stetige, signifikante Erhöhung der Trockendichte und eine Verringerung der Luftporenanteile nur bis zu einem bestimmten Grad erreicht werden konnte, indem die Verdichtungsarbeit durch eine Erhöhung der Walzenübergaenge gesteigert wurde. Teilweise bewirkten zusätzliche Walzenübergänge sogar eine Auflockerung des Bodens.
Bei Verwendung von Böden und Baustoffen mit umweltrelevanten Inhaltsstoffen (BumI) in Erdbauwerken sind gegebenenfalls technische Sicherungsmaßnahmen zu ergreifen, um in umweltspezifischer und wasserwirtschaftlicher Hinsicht einen verantwortungsvollen Einsatz dieser Materialien zu gewährleisten. Die technischen Sicherungsmaßnahmen sind dabei so zu gestalten, dass eine Durchsickerung der Böden und Baustoffe mit umweltrelevanten Inhaltsstoffen und damit ein möglicher Austrag von Schadstoffen auf ein verträgliches Maß minimiert werden.
Das Merkblatt über Bauweisen für technische Sicherungsmaßnahmen beim Einsatz von Böden und Baustoffen mit umweltrelevanten Inhaltsstoffen im Erdbau (MTS E) stellt insgesamt sechs unterschiedliche Bauweisen für Straßendämme, die entsprechend auch auf andere Erdbauwerke (z.B. Lärm- und Sichtschutzwälle) übertragbar sind, vor. Diese können prinzipiell in Bauweisen mit Abdichtungen (Bauweisen A, B, C), Bauweisen mit gering durchlässigem Körper aus Böden oder Baustoffen mit umweltrelevanten Inhaltsstoffen (Bauweise E) und Kernbauweisen ohne Abdichtungen (Bauweise D) unterschieden werden.
Im Rahmen eines vom Bundesministerium für Bau, Verkehr und Stadtentwicklung geförderten Forschungsvorhabens wurden am Zentrum Geotechnik der TU München von Schweller et al. (2009) Berechnungen zur Bewertung der Wirksamkeit der Bauweisen durchgeführt. Anhand dieser Berechnungen konnte die prinzipielle Wirksamkeit der Bauweisen A, B und D belegt werden. Für die Bauweise E ergaben sich vergleichsweise große Sickerwassermengen. Die Berechnungen wurden allerdings mit einem Durchschnittswert des Niederschlages, der aus dem Gesamtjahresniederschlag verteilt auf 365 Tage ermittelt wurde, durchgeführt. Dadurch kommt es rechnerisch zu konstanten kleinen Infiltrationsmengen in den Straßendamm ohne Ausbildung eines Oberflächenabflusses. Damit verbunden sind unrealistisch hohe Sickerwassereintritte in die Ersatzbaustoffe. Die Wirksamkeit der Bauweise E konnte deshalb im Rahmen der Untersuchungen von Schweller et al. nicht abschließend bewertet werden. Basierend auf den am Zentrum Geotechnik der TU München von Schweller et al. durchgeführten Untersuchungen wurden im Rahmen des Forschungsvorhabens FE 84.105 Berechnungen zur Durchsickerung der Bauweise E unter Ansatz von Tageswerten des Niederschlages, der Evapotranspiration und des Oberflächenabflusses durchgeführt. Die mit VADOSE/W durchgeführten Berechnungen zeigen, dass die Vergleichmäßigung der Infiltration bei einer Berechnung mit Durchschnittswerten der Infiltration zu ca. 1,7-fach
größeren Sickerwassermengen als beim Ansatz von Tageswerten führt. Die mit Tageswerten der Klimadaten für einen Zeitraum von 10 Jahren durchgeführten Berechnungen ergaben für die Bauweise E bei einem Durchlässigkeitsbeiwert des Kerns von k = 1 · 10-8 m/s eine mittlere Sickerwassermenge aus dem Kern von ca. 60 mm/a.