Refine
Document Type
- Book (6)
- Article (3)
- Part of a Book (1)
Keywords
- Bearing capacity (5)
- Bridge (5)
- Brücke (5)
- Spannbeton (5)
- Tragfähigkeit (5)
- Bemessung (4)
- Berechnung (4)
- Beton (4)
- Calculation (4)
- Concrete (4)
Institute
Für die Herstellung von Betonfahrbahndecken ist für Ober- und Unterbeton ein Zement der gleichen Art und Festigkeitsklasse zu verwenden. Durch eine flexiblere Handhabung von Bindemitteln im Ober- und Unterbeton können sich ökologische und wirtschaftliche Vorteile eröffnen. Ein sinnvoller Ansatz ist die Verwendung von Zementen mit hohem Klinkeranteil für den hochbelasteten, dünnen Oberbeton in Verbindung mit Zementen mit reduziertem Klinkeranteil für den Unterbeton. So kann die Ökobilanz der Betonstraße verbessert und die Gefahr einer schädigenden Alkali-Kieselsäure-Reaktion (AKR) im Unterbeton vermindert werden. Vorteile können sich ebenfalls aus einem teilweisen Zementersatz durch Steinkohlenflugasche im Ober- sowie Unterbeton ergeben. Da die Anrechnung der Flugasche auf den Wasser/Zement-Wert des Fahrbahndeckenbetons nicht gestattet ist, wird Flugasche in der Regel nicht für den Bau von Verkehrsflächen aus Beton verwendet. Im Rahmen des Forschungsvorhabens sollten die notwendigen betontechnologischen Kenntnisse gewonnen werden, um eine kritische Bewertung der genannten Einschränkungen in der Bindemittelanwendung im Betonstraßenbau vornehmen zu können. Im Ergebnis wurde eine Modifizierung der Einschränkungen angestrebt. Es galt nachzuweisen, dass sich unter den spezifischen Randbedingungen von Fahrbahndecken aus Beton weder für Herstellung, Nutzung sowie Dauerhaftigkeit (insbesondere Frost-Taumitteleinwirkung) Nachteile oder Beeinträchtigungen ergeben. Insbesondere war dabei das Verbund- und Verformungsverhalten von Ober- und Unterbeton zu berücksichtigen. Weiterhin wurde untersucht, inwiefern durch die Verwendung von hüttensandhaltigen Zementen bzw. von Flugasche im Unterbeton das Risiko einer AKR vermindert wird und dadurch die Anzahl an verwendbaren Gesteinskörnungen im Unterbeton vergrößert werden kann. Aus labortechnischer Sicht sowie auf Basis theoretischer Betrachtungen wurden die angestrebten Vorteile der Verwendung unterschiedlicher Bindemittel in Ober- und Unterbeton bei vertretbaren technologischen Risiken erzielt. Insbesondere das AKR-Schadenspotential ausgewählter kritischer Gesteinskörnungen konnte durch Einsatz hüttensandhaltiger Zemente sowie auch durch Steinkohlenflugasche deutlich gesenkt werden. Die Anrechnung von Steinkohlenflugasche auf w/z-Wert und Zementgehalt verursachte in Verbindung mit klinkerreichen Zementen (bis 15 % HÜS) keine nennenswerte Verminderung des Frost-Tausalz-Widerstandes. Auf Grundlage der gewonnenen Erkenntnisse kann die Beachtung der aufgezeigten Ansätze im Regelwerk empfohlen werden. Eine baupraktische Bestätigung dieser Ergebnisse, z. B. in Form einer Probestrecke ist zu empfehlen.
Im Rahmen eines Forschungsvorhabens an der RWTH Aachen wurden mehrere Spannbetondurchlaufträger bis zum Versagen belastet. Neben umfangreicher konventioneller Messtechnik wurden zusätzlich innovative Messmethoden durch die Bundesanstalt fuer Materialforschung und -prüfung (BAM) getestet. Darunter waren eingebettete Ultraschall-Transducer, deren Daten mit einer neuartigen Methode, der Codawelleninterferometrie (CWI), ausgewertet wurden. Dieses Verfahren detektiert auch kleinste Änderungen im Signal und in der Wellengeschwindigkeit gegenüber einer Referenzmessung. Hiermit koennen Belastungs- und Strukturänderungen sowie Schaeden sehr viel sensibler angezeigt werden als bei konventionellen Ultraschallmessungen. Durch eine Modifikation des Verfahrens mit gleitender Referenz können aber auch starke Veränderungen im Material, wie sie bei Bruchversuchen auftreten, erfasst werden. In den Versuchen gelang es mit Netzwerken aus bis zu 20 Ultraschall-Transducern, Spannungskonzentrationen und Rissbildungen qualitativ zu detektieren und zu verfolgen, ohne dass die Sensoren direkt am Ort der Änderung angebracht werden müssen.
Bei der Nachrechnung älterer Spannbetonbruecken mit Hohlkastenquerschnitt werden derzeit häufig grosse rechnerische Defizite beim Nachweis der schubfesten Verbindung zwischen gedrückter Bodenplatte und den Stegen im Bereich der Zwischenunterstützungen festgestellt. Neben erhöhten Beanspruchungen als Folge stetig wachsender Verkehrslastzahlen sind diese Defizite im Wesentlichen auf die mit Einführung der DIN-Fachberichte für den Brückenbau im Jahr 2003 geänderten Bemessungsvorschriften zurückzuführen. In Deutschland erfolgt die Ermittlung des Tragwiderstands im Grenzzustand der Tragfähigkeit (GTZ) seither auf Grundlage des Fachwerkmodells mit Rissreibung. In den vorgestellten Untersuchungen wird gezeigt, dass die Übertragung dieses für Stegquerschnitte entwickelten Modells auf Druckgurte mechanisch nicht begründet ist und zu sehr konservativen Ergebnissen führt. Auf Basis der Ergebnisse numerischer und analytischer Betrachtungen werden Bemessungsmodelle entwickelt, die das Tragverhalten vorwiegend gedrückter Gurtbereiche realitätsnäher erfassen. Die Kalibrierung und Verifikation der Finite Element-Modelle erfolgt in den durchgeführten Untersuchungen stets durch den Vergleich mit Ergebnissen gut dokumentierter Versuche aus der Literatur.
Bei der Nachrechnung von Straßenbrücken aus Beton werden häufig rechnerische Tragfähigkeitsdefizite festgestellt. Neben stetig steigenden Beanspruchungen infolge zunehmender Verkehrslastzahlen und einer gleichzeitig alternden Bausubstanz sind diese zum Teil auch auf die mit der Weiterentwicklung der Bauweise fortgeschriebenen bzw. geänderten Nachweisformate zurückzuführen. Im Rahmen der Ressortforschung des Bundesministeriums für Verkehr und digitale Infrastruktur (BMVI) und der Bundesanstalt für Straßenwesen (BASt) werden die Ursachen für die rechnerischen Defizite systematisch analysiert und Lösungsansätze entwickelt. Die Ergebnisse in Form von Berichten, Erfahrungssammlungen bzw. konkreten Richtlinientextvorschlägen fließen kontinuierlich in die Arbeit der Gremien zur Fortschreibung der Regelwerke ein.
Zur Vereinheitlichung der Vorgehensweise bei der Nachrechnung von Straßenbrücken wurde in Deutschland im Mai 2011 die "Nachrechnungsrichtlinie" eingeführt. Im Rahmen des vorliegenden, von der Bundesanstalt für Straßenwesen (BASt) initiierten Forschungsvorhabens wurden in den vergangenen Monaten die Ergebnisse zu insgesamt etwa 150 nachgerechneten Stahlbeton- und Spannbetonbrücken aus ganz Deutschland gesammelt und systematisch ausgewertet. Wesentliches Ziel des Projektes ist es, Grundlagen für eine noch effizientere Nachrechnung mit aussagekräftigen Ergebnissen zu schaffen. In diesem Bericht werden zunächst typische "rechnerische Defizite" benannt, welche Zusatzbetrachtungen erforderlich machen, die über die Anwendung der Sonderregelungen der Nachweisstufe 2 hinausgehen. Anschließend werden Empfehlungen zur Nachrechnung allgemein sowie zum Umgang mit typischen, rechnerischen Stufe-2-Defiziten gegeben und es werden Vorschläge zur Aufbereitung von Nachrechnungsergebnissen vorgestellt und diskutiert.
Aufgrund der Altersstruktur des Brückenbestands und der zunehmenden Verkehrsbelastung besteht die dringende Notwendigkeit viele ältere Brücken im Bundesfernstraßennetz zukunftsfähig zu ertüchtigen. Im Rahmen der Ressortforschung des BMVI und der BASt werden die wesentlichen Aspekte analysiert und erforderliche Verfahren entwickelt. Dies betrifft eine netzweite Risikoanalyse hinsichtlich des Erfordernisses von objektbezogenen Betrachtungen, die Weiterentwicklung der Nachrechnungsformate und Entscheidungshilfen zur Unterstützung der Straßenbauverwaltungen im Hinblick auf die Ertüchtigung des Bestands.
Für die in Teil 3 der Alkali-Richtlinie des DAfStb (Ausgabe 2007) beschriebenen AKR-Schnelltests (Referenzprüfverfahren, Alternativverfahren) liegen bisher keine Präzisionswerte vor. Daher ließen sich die mit diesen beiden Verfahren erzielten Prüfergebnisse im Hinblick auf die Unterscheidung von Material- und Prüfstreuungen nicht zuverlässig bewerten. Die Bundesanstalt für Straßenwesen (BASt) beauftragte daher das Forschungsinstitut der Zementindustrie (FIZ) mit Untersuchungen zur Ermittlung von Präzisionswerten für die beiden o. g. Schnelltests. Im Rahmen der Auswertung wurden vorhandene Ergebnisse (Einzelwerte der Dehnung) aus Ringversuchen der Jahre 2005, 2006, 2008, 2009, 2010 und 2011 mit dem Referenzprüfverfahren gesammelt und in die Ermittlung von Präzisionswerten einbezogen. Die Ergebnisse zu den o. g. Ringversuchen wurden von der Universität Hamburg-Harburg bereitgestellt. In 2012 koordinierte das FIZ Untersuchungen zur Bestimmung von Präzisionswerten nach der Normenreihe DIN ISO 5725 für beide Schnelltests nach Alkali-Richtlinie. Im Rahmen der Untersuchungen wurden in fünf Labors jeweils eine Untersuchung je Prüfverfahren mit drei Gesteinskörnungen (G1, G2, G3) und in drei Labors jeweils vier weitere Untersuchungen je Prüfverfahren mit zwei Gesteinskörnungen (G1, G2) durchgeführt. Ein Teil der Untersuchungen in 2012 wurde unter Wiederholbedingungen durchgeführt. Durch Kombination der Präzisionswerte unter Wiederholbedingungen mit den Präzisionswerten unter Zwischenbedingungen wurden Präzisionswerte unter Vergleichbedingungen ermittelt. Für das Alternativverfahren lagen keine Ermittlungsergebnisse aus Ringversuchen vergangener Jahre vor. Die Präzisionswerte für das Alternativverfahren wurden allein auf Basis der Ergebnisse aus den Vergleichsuntersuchungen 2012 ermittelt. Von besonderer Bedeutung für die Beurteilung der Alkaliempfindlichkeit von Gesteinskörnungen mit dem Referenzprüfverfahren sind die Präzisionswerte für das Prüfalter von 13 Tagen (derzeitiger Bewertungszeitpunkt). Für die unter Zwischenbedingungen ermittelte Dehnung der Ringversuche 2005 bis 2011 wurden nach 13 Tagen Prüfdauer Variationskoeffizienten vL zwischen rd. 15 und rd. 30 % ermittelt. In den Untersuchungen in 2012 mit 5 Labors lagen die Variationskoeffizienten unter Zwischenbedingungen vL zwischen rd. 4 und rd. 19 %. Von besonderer Bedeutung für die Beurteilung der Alkaliempfindlichkeit von Gesteinskörnungen mit dem Alternativverfahren sind die Präzisionsdaten für das Prüfalter von 28 Tagen (derzeitiger Bewertungszeitpunkt). In den Untersuchungen in 2012 mit 3 bzw. 5 Labors lagen die Variationskoeffizienten vL für die Dehnungen im Alter von 28 Tagen zwischen rd. 7 und rd. 14 %.
Die Bemessung des schubfesten Anschlusses von Gurten gegliederter Querschnitte erfolgt in Deutschland derzeit analog zum Querkraftnachweis für Stegquerschnitte mit einem Fachwerkmodell unter Berücksichtigung eines zusätzlichen Betontraganteils infolge Rissreibung. Die Neigung des Druckstrebenwinkels innerhalb des Fachwerks wird bei Anwendung dieses Bemessungsmodells auf die Gurte gegliederter Querschnitte nicht auf Grundlage des tatsächlichen Spannungszustandes bei Erstrissbildung festgelegt. Stattdessen erfolgt die Festlegung des Winkels auf Basis eines rein rechnerischen Spannungszustandes, mit einer theoretisch zur Schubrissbildung führenden Schubspannung [14], wobei die Längsspannung σx nicht gleichermaßen mit der Schubspannung gesteigert wird. Tatsächlich wachsen unter einer Laststeigerung bis zum GZT die Spannungen τ und σ im Gurtanschnitt gleichermaßen an.
In den in [14] durchgeführten Untersuchungen zum Tragverhalten von Druckgurtanschlüssen wurde gezeigt, dass diese Vorgehensweise das tatsächliche Tragverhalten nicht hinreichend genau berücksichtigt. Dies führt insbesondere in Gurtbereichen, die unter hohen Längsdruckspannungen stehen, zu konservativen Ergebnissen. Es wurden daher Bemessungsansätze erarbeitet und vorgestellt, die die tatsächlichen Spannungsverhältnisse und die wahrscheinliche Rissbildung mit größerer Genauigkeit erfassen.
Die Anwendungsmöglichkeiten für die unterschiedlichen Bemessungsvorschläge werden hier beschrieben und anhand von Beispielrechnungen mit den derzeitigen Bemessungsregeln nach DIN EN 1992-2/NA bzw. DIN FB 102 verglichen. Die Ergebnisse des Vergleichs sind ein Beleg für das Potenzial der neu entwickelten Modelle.
Für die geplante Weiterentwicklung der Nachrechnungsrichtlinie werden Formulierungsvorschläge für mögliche Richtlinientexte erarbeitet. Hierbei orientieren sich die Vorschläge im Hinblick auf Gliederung, Abkürzungen und Formelzeichen am derzeitigen Stand der Nachrechnungsrichtlinie, Stand Mai 2011 [15], inkl. der ersten Ergänzung, Stand April 2015 [16].
Schwerpunkt des Vorhabens waren Untersuchungen an bisher ungeschädigten Betonfahrbahndecken im Bundesfernstraßennetz, in denen vor rund 30 Jahren Gesteinskörnungen zur Anwendung kamen, die nach Auskunft der BASt gemäß den heutigen Bestimmungen nach dem ARS Nr. 04/2013 teilweise als alkaliempfindlich einzustufen sind.
In Abstimmung mit der BASt wurden insgesamt fünf Streckenabschnitte auf den Bundesautobahnen A7, A92 und A93 in Bayern für die Untersuchungen ausgewählt. Im ersten Bearbeitungsschritt erfolgte eine visuelle Begutachtung der Betondecken und eine Zuordnung zu AKR-Schadenskategorien. Des Weiteren wurden AKR-relevante Kennwerte der verwendeten Betonzusammensetzungen anhand der verfügbaren Bestandsunterlagen zusammengestellt. Im Anschluss erfolgte die Entnahme von Bohrkernen aus den Betondecken und die Präparation von Probekörpern für weitere Untersuchungen. Untersucht wurden die mechanischen Eigenschaften (Druck- und Spaltzugfestigkeit), der vorhandene Schädigungsgrad infolge AKR (Dünnschliffmikroskopie) sowie das Restdehnungspotential infolge AKR (Dehnung im 60 °C Betonversuch mit Alkalizufuhr und anschließende Dünnschliffmikroskopie).
Mittels Röntgenbeugungsanalyse und Dünnschliffmikroskopie erfolgten Vergleiche zwischen den im Beton vorhandenen und den aktuell in den Abbaustätten produzierten Gesteinskörnungen, soweit aktuelle Proben der Gesteinskörnungen beschafft werden konnten. Die aktuellen Gesteinskörnungsproben wurden mit dem Schnellprüfverfahren nach Alkali-Richtlinie charakterisiert.
Bei der visuellen Begutachtung der Fahrbahndecken wurden an keinem der fünf Streckenabschnitte AKR-typische Schäden festgestellt. Die Laboruntersuchungen zum Schädigungsgrad und zum Restdehnungspotential infolge AKR bestätigten im Wesentlichen den aufgrund der Begutachtung angenommenen hohen AKR-Widerstand der Betone.
Zur Beurteilung der Alkaliempfindlichkeit von Gesteinskörnungen sind im Teil 3 der Alkali-Richtlinie des DAfStb vom Februar 2007 das Schnellprüfverfahren (Referenzprüfverfahren (SPV)) bzw. der Mörtelschnelltest (Alternativverfahren (MST)) und der Betonversuch mit Nebelkammerlagerung (40-°C) (NK) vorgesehen. Bisher war nicht abschließend geklärt, ob die für diese Standardprüfungen festgelegten Beurteilungskriterien auch dann Verwendung finden können, wenn die Gesteinskörnungen in Fahrbahndecken aus Waschbeton (hoher Zementgehalt, besonders gestaltete Oberfläche) angewendet werden sollen. Für die Untersuchungen wurden drei alkaliunempfindliche Splitte (Andesit I Mitteldeutschland (MD), Rhyolith Süddeutschland (SD) und Gabbro), ein alkaliempfindlicher Splitt (Rhyolith MD) und zwei "potenziell" alkaliempfindliche Splitte (Andesit II MD, Granodiorit) verwendet. Die Bewertung der Alkaliempfindlichkeit der sechs groben Gesteinskörnungen auf Basis der Ergebnisse der AKR-Performance-Prüfungen ergab, dass drei von ihnen "geeignet für die Feuchtigkeitklasse WS im Hinblick auf die Vermeidung einer schädigenden Alkali-Kieselsäure-Reaktion (AKR)" sind. Bei ausschließlicher Verwendung der Ergebnisse der Standardprüfverfahren nach Alkali-Richtlinie konnte diese Aussage getroffen werden, wenn eine der folgenden Bedingungen erfüllt war: - Alle Gesteinskörnungsprüfungen nach Teil 3 der Alkali-Richtlinie des DAfStb wurden bestanden. - Der Mörtelschnelltest (Alternativverfahren) nach Teil 3 der Alkali-Richtlinie wurde bestanden. - Der 60-°C-Betonversuch nach Teil 3 der Alkali-Richtlinie wurde bestanden. Die Begünstigung einer schädigenden AKR durch sich von der Oberfläche abhebende Gesteinskörner (Waschbetonoberfläche) konnte bei den untersuchten Betonzusammensetzungen nicht nachgewiesen werden. Im Bereich der Waschbetonoberflächen wurden keine AKR-Reaktionsprodukte gefunden.