Refine
Keywords
- Prüfverfahren (2)
- Seitlicher Zusammenstoß (2)
- Side impact (2)
- Test method (2)
- Airbag (1)
- Anfahrversuch (1)
- Anthropometric dummy (1)
- Bewertung (1)
- Deformable barrier (impact test) (1)
- Deformierbare Barriere (Anpralltest) (1)
Institute
- Abteilung Fahrzeugtechnik (2)
- Sonstige (1)
Past European collaborative research involving government bodies, vehicle manufacturers and test laboratories has resulted in a prototype barrier face called the Advanced European Mobile Deformable Barrier (AE-MDB) for use in a new side impact test procedure . This procedure offers a better representation of the current accident situation and, in particular, the barrier concept is a better reflection of front-end stiffness seen in today- passenger car fleet compared to that of the current legislative barrier face. Based on the preliminary performance corridors of the prototype AE-MDB, a refined AE-MDB specification has been developed. A programme of barrier to load cell wall testing was undertaken to complete and standardise the AE-MDB specification. Barrier faces were supplied by the four leading manufacturers to demonstrate that the specification could be met by all. This paper includes background, specification and proof of compliance.
The European Enhanced Vehicle-safety Committee (EEVC) Working Group 13 for Side Impact Protection has been developing an Interior Headform Test Procedure to complement the full-scale Side Impact Test Procedure for Europe and for the proposed IHRA test procedures. In real world accidents interior head contacts with severe head injuries still occur, which are not always observed in standard side impact tests with dummies. Thus a means is needed to encourage further progress in head protection. At the 2003 ESV-Conference EEVC Working Group 13 reported the results on Interior Headform Testing. Further research has been performed since and the test procedure has been improved. This paper gives an overview of its latest status. The paper presents new aspects which are included in the latest test procedure and the research work leading to these enhancements. One topic of improvement is the definition of the Free Motion Headform (FMH) impactor alignment procedure to provide guidelines to minimize excessive headform chin contact and to minimize potential variability. Research activities have also been carried out on the definition of reasonable approach head angles to avoid unrealistic test conditions. Further considerations have been given to the evaluation of head airbags, their potential benefits and a means of ensuring protection for occupants regardless of seating position and sitting height. The paper presents the research activities that have been made since the last ESV Conference in 2003 and the final proposal of the EEVC Headform Test Procedure.