Refine
Year of publication
Keywords
- Emission (6)
- Measurement (6)
- Messung (6)
- Forschungsbericht (5)
- Immission (5)
- Research report (5)
- Deutschland (4)
- Feinstaub (4)
- Germany (4)
- Luftverunreinigung (4)
Institute
Auf Basis des HBEFA 3.1 wurde das Emissionsmodul grundlegend überarbeitet. Die Emissionsberechnung kann nunmehr für die Bezugsjahre 2005 bis 2030 erfolgen. Aktualisiert wurden auch die PM10-Emissionsfaktoren für Aufwirbelung und Abrieb. Für freie (nicht überdeckelte Strecken) im guten Fahrbahnzustand sollten für den Leichtverkehr (LV) für alle Verkehrssituationen mit Tempolimit größer 50 km/h unabhängig vom Level of Service 30 mg/(km • Fzg) sowie für den Schwerverkehr (SV) 130 mg/(km • Fzg) verwendet werden. Für Tunnelstrecken werden für den LV 5 mg/ (km • Fzg) sowie für den SV 130 mg/(km • Fzg) vorgeschlagen. Für Straßen im schlechten Zustand sind diese Werte mit dem Faktor 2 zu multiplizieren. Für die Ermittlung der nicht motorbedingten PM2.5-Emissionen (Reifen-, Straße- und Bremsabrieb) wird der Ansatz aus CORINAIR vorgeschlagen. Kupplungsabrieb und Wiederaufwirbelung von Straßenstaub können nach derzeitigen Erkenntnissen vernachlässigt werden. Es wurde auch ein entsprechender Berechnungsvorschlag für Benzo(a)pyren-Emissionsfaktoren abgeleitet. Er basiert auf Emissionsfaktoren aus einer Studie des Schweizer Bundesamtes fuer Umwelt, Wald und Landschaft. Die bisher in MLuS integrierten gebietstypischen Vorbelastungswerte wurden anhand vorliegender Messdaten aus den Jahren 2000 bis 2006 aktualisiert. Neu wurden Vorbelastungsdaten für PM2.5 abgeleitet, da diese bisher in MLuS noch nicht vorgesehen waren. Die Änderungen der Vorbelastungswerte werden wie bisher tabellarisch in Form von Reduktionsfaktoren der Schadstoffbelastung angegeben. Die Abschätzungen der immissionsseitigen Wirkungen von Lärmschutzwänden- und -wällen wurden auf der Grundlage von mikroskaligen Modellrechnungen (MISKAM) quantifiziert und mit Windkanalmessungen bzw. Ergebnissen aus der Literatur abgeglichen. Nunmehr können Lärmschutzwände und Lärmschutzwälle bis 10 m berücksichtigt werden. Als NO-NO2-Konversionsmodell wird nunmehr ein vereinfachtes Chemiemodell auf Basis der Beschreibung der chemischen Umwandlung im Gleichgewicht der Stoffe NO2, NO und Ozon verwendet. Die Funktion zur Abschätzung der Überschreitungshäufigkeiten des NO2-Stundengrenzwertes wurde anhand von Messdaten der Jahre 2000 bis 2009 aktualisiert. Mit den zuvor erläuterten Ergebnissen wurde eine grundlegende Aktualisierung des PC-Programms durchgeführt. In Absprache mit dem zuständigen FGSV-Arbeitskreis wird das Programm "Richtlinien zur Ermittlung der Luftqualität an Straßen ohne oder mit lockerer Randbebauung" (RLuS) heißen. Die Onlinehilfe und das Handbuch zum Programm wurden ebenfalls aktualisiert. Abgeschlossen wurde auch im Rahmen des hier vorliegenden Projektes die Neuformatierung der RLuS-Broschüre.
Although many German monitoring sites report declines of NOx concentrations, NO2-concentrations actually stagnate or even increase quite often. Various analyses have identified the altered compositions of nitrogen oxides (NO2/NOx-ratio) emitted by motor vehicles (resulting in an increase of primary NO2-emissions) as well as the chemical environmental conditions (mainly ground level ozone) as the main causes. The chemical conversion of NO to NO2 is often parameterized in dispersion calculations of exhaust emissions. A widely applied conversion model is the so-called Romberg approach from 1996. However, the Romberg approach has to be re-evaluated to accommodate the above-mentioned conditions. This article presents an adjustment to the Romberg approach in accordance with the measured data from 2000 to 2006, taking into consideration substantially higher NO2/NOx-ratios especially for higher NOx-concentrations. Model calculations with OSPM (Operational Street Pollution Model) including its internal chemistry module are able to reproduce very well the trends in the measured annual NO2-concentrations over a 10 year period. The relevant parameters for variations between the years are the NOx-emissions, primary NO2-emissions, ozone concentrations, wind conditions, and background concentrations. A simplified chemistry model based on annual mean NOx- and NO2-concentrations, and background ozone concentrations, as well as primary NO2-emissions is presented as a better method than the updated Romberg approach. This model simulates the annual mean NO2-concentrations much more accurately than the conventional and the updated Romberg approaches.
Auf Basis von Immissionsmessdaten an 8 Straßenabschnitten wurde die Wirkung von potenziellen PM10-Minderungsmaßnahmen (Temporeduzierung, Verbesserung des Verkehrsflusses, Verbesserung des Fahrbahnzustandes) beziehungsweise der Einfluss meteorologischer Parameter auf die PM10-Konzentrationen beziehungsweise -Emissionen untersucht. Der Einfluss eines normgerechten Ausbaus einer innerstädtischen Bundesstraße mit Einrichtung einer "Grünen Welle" auf die PMx-Belastungen konnte im Feldversuch an der Bergstraße in Dresden untersucht werden. Dabei konnte nachgewiesen werden, dass sich der Verkehrsfluss nach dem Ausbau in beiden Richtungen deutlich verbessert hat. Stadtauswärts war vor dem Ausbau ein mäßiger Verkehrsfluss (Verkehrssituation nach Handbuch für Emissionsfaktoren = LSA2), stadteinwärts ein schlechter Verkehrsfluss zu verzeichnen gewesen. Nach dem Ausbau funktioniert stadtauswärts die Grüne Welle (HVS2), stadteinwärts gibt es Haltezeiten an den Lichtsignalanlagen, die den Verkehrsfluss im Allgemeinen nur gering beeinträchtigen (HVS2, LSA2). Die mittleren Fahrzeuggeschwindigkeiten lagen im Bereich der Messstelle vor dem Ausbau bei circa 30 km/h und nach dem Ausbau bei über 40 km/h. Es konnte eine PM10-Reduktion durch Verbesserung des Verkehrsflusses (Grüne Welle) trotz höherer Fahrzeuggeschwindigkeiten von circa 3pg/m3 (circa 35 Prozent der PM10-Zusatzbelastung) abgeleitet werden. Umfangreiche Datenauswertungen konnten für die B10 bei Karlsruhe, die Merseburger Straße in Halle und den Jagtvej in Kopenhagen in Verbindung mit jeweils repräsentativen Hintergrundmessstellen durchgeführt werden. Es konnten erwartungsgemäß deutliche Abhängigkeiten der PM10- und PM2.5-Konzentrationen von meteorologischen Parametern beobachtet werden. Dabei gibt es aber auch eine Vielzahl von Korrelationen der meteorologischen Kenngrößen untereinander, sodass aus der tendenziellen Abhängigkeit der Partikelbelastung von einer meteorologischen Kenngröße unmittelbar nicht auf dessen Ursache/Wirkungsbeziehung geschlossen werden kann. Die stärksten meteorologischen Einflüsse auf die PM10-Gesamtbelastungen gehen von den vertikalen Austauschbedingungen, von der Anzahl niederschlagsloser Tage seit dem letzten Niederschlagsereignis und der Windgeschwindigkeit aus. Die stärksten meteorologischen Einflüsse auf die PM10-Zusatzbelastungen gehen von der Windgeschwindigkeit und -richtung sowie von den Temperaturen aus. Bei den PM10-Emissionsfaktoren zeichnet sich zum Beispiel an der Merseburger Straße für die Werktage mit Niederschlag im Mittel ein circa 30 Prozent geringerer Wert ab als an den trockenen Werktagen. Diese Abnahme ist signifikant. Die PM10-Emissionsfaktoren an den ersten drei trockenen Tagen nach einem Niederschlagsereignis sind gleich, zeigen also keine Zunahme mit andauernder Trockenheit. Bei den PM2.5-Emissionen ist dieser Minderungseffekt durch Niederschlag nicht zu verzeichnen. Eine Bindung des Staubes im Straßenraum bei hoher Luftfeuchtigkeit konnte nicht festgestellt werden. Während die PM2.5-Emissionsfaktoren (weitestgehend Motoremissionen) unabhängig von der Jahreszeit sind, nimmt die Emission der Partikelfraktion PM2.5 bis PM10 im Winterhalbjahr deutlich (über 100 Prozent) zu. Ursachen könnten das Einbringen von Streugut und vermehrte Schmutzeinträge auf der Straße sein. Im Winterhalbjahr sind auch die PM10-Emissionsfaktoren, wie erwartet, von den Austauschbedingungen unabhängig und liegen jeweils deutlich (Faktor zwei) höher als im Sommerhalbjahr. Dieser Anstieg der PM10-Emissionen unter winterlichen Bedingungen könnte auch erklären, warum die PM10-Emissionsfaktoren im Unterschied zu PM2.5 bei niedrigen Tagesmitteltemperaturen deutlich höher sind als bei hohen Temperaturen. Der hohe Anstieg der PM10-Konzentrationen während (winterlicher) austauscharmer Inversionswetterlagen könnte somit sowohl von den schlechten Austauschbedingungen als auch von deutlich höheren nicht motorbedingten PM10-Emissionen beeinflusst sein. Derzeit laufen in parallelen Forschungsprojekten weitere Arbeiten, um den Erkenntnisstand bei der PM10-Emissionsmodellierung beziehungsweise bei der Bewertung von Minderungsmaßnahmen zu erhöhen. Es sollte einer separaten Auswertung vorbehalten sein, aus all diesen neuen Forschungsprojekten die Schlussfolgerungen für die zukünftige PM10-Modellierung zu ziehen.
Ziel des Projektes war es, den Behörden und Kommunen Hinweise auf die Wirkung von Verkehrsberuhigungen zu geben. Es wurden an der Merseburger Straße in Halle (4-streifige Hauptverkehrsstraße mit cirka 32.000 Kfz/d, Straßenbahn auf eigenem Gleisbett in Mittellage) mit dem mobilen Messfahrzeug SNIFFER im Zeitraum 21.4. bis 10.5.2008 NOx-, PM 2.5- und PM10-Konzentrationen sowie ein Maß für den durch SNIFFER indizierten nicht motorbedingten PM10-Emissionsfaktor räumlich und zeitlich differenziert erfasst. Weiterhin erfolgten an zwei Tagen ebenfalls mittels eines Messfahrzeuges messtechnische Analysen des Verkehrsflusses. Die an der Merseburger Straße durchgeführten verkehrsberuhigenden Maßnahmen (Tempo 30-Signalisierung, an ausgewählten Tagen zusätzlich Displays zur Anzeige der Fahrzeuggeschwindigkeit sowie angekündigte beziehungsweise durchgeführte Radarkontrollen) führten zu nachweisbaren Reduktionen der mittleren Reisegeschwindigkeiten bis 8 km/h. Die größten Reduktionen wurden dabei an den Tagen festgestellt, an denen Radarkontrollen durchgeführt wurden oder der Verkehrsteilnehmer (oder Fahrzeugführer) durch ein Hinweisschild "Geschwindigkeitskontrolle" mit diesen rechnen musste. Allerdings hielten auch da nur cirka 15 % der Fahrzeuge das signalisierte Tempolimit von 30 km/h ein. Cirka 12 % bis 19 % der Fahrzeuge waren trotz Hinweisschilds und Geschwindigkeitsdisplays während der Radarkontrollen schneller als 41 km/h. Relevante Veränderungen des Verkehrsflusses (Stand-, Konstantfahrt- und Beschleunigungsanteile) waren durch die Maßnahmen nicht zu verzeichnen. Auf den Straßenabschnitten der Merseburger Straße, auf denen der Verkehrsfluss gleichmäßig war, konnte eine signifikante positive Korrelation zwischen dem Maß für die nicht motorbedingten SNIFFER-PM10-Emissionsfaktoren und der Fahrzeuggeschwindigkeit festgestellt werden. Daraus lässt sich eine Minderung von 20 % für die Werktage mit wirksamen verkehrsberuhigenden Maßnahmen ableiten. Falls es gelingen würde, dass alle Fahrzeuge das Tempolimit von 30 km/h bei gleichem Verkehrsfluss einhalten würden, dann ergäbe sich aus den abgeleiteten Korrelationsfunktionen ein maximales Minderungspotenzial von 40 % bis 50 %. An Straßenabschnitten, an denen der Verkehrsfluss ungleichförmiger war, konnte keine solche Korrelation gefunden werden. Hier spielen wahrscheinlich andere Einflüsse (zum Beispiel das Beschleunigungsverhalten der Fahrzeuge) eine stärkere Rolle. Die untersuchten Maßnahmen an der Merseburger Straße in Halle hatten somit einen, wenn auch geringen, positiven Effekt auf die PM10-Belastung an der Messstelle HEVC. Die nach HBEFa klassifizierte Verkehrssituation hatte im Messzeitraum keinen signifikanten Einfluss auf die SNIFFER-PM10-Emissionsfaktoren. Der im derzeitigen PM10-Emissionsmodell angesetzte starke Anstieg der nicht motorbedingten PM10-Emissionsfaktoren für Straßen mit schlechtem Verkehrsfluss, welcher sich aus einer Vielzahl von ausgewerteten Immissionsmessungen ableitete, spiegelte sich nicht wider. Signifikant niedrigere Werte des mit SNIFFER ermittelten Maßes für die nicht motorbedingten PM10-Emissionsfaktoren wurden trotz des dort vorliegenden schlechten Fahrbahnzustandes nur in der Turmstraße festgestellt. Optisch wesentlichster Unterschied zu den anderen Straßenabschnitten war dort neben dem sehr schlechten Straßenzustand eine sehr glatte Oberfläche der großen Asphaltflickstellen relativ zu den anderen Straßenoberflächen und die nur einseitig dichte Straßenrandbebauung in Nord-Süd-Ausrichtung. Die anderen Straßenabschnitte sind entweder beidseitig bebaut oder ost-west orientiert. Im Messzeitraum führten die gepflasterten Fahrbahnoberflächen nicht zu einem deutlich höheren SNIFFER-PM10-Emissionsfaktor. Allerdings musste SNIFFER auf diesen auch deutlich langsamer als auf den anderen Straßenabschnitten fahren.
Ziel des Projektes war es, systematische Untersuchungen zum Abriebverhalten und damit zur Partikelemission verschiedener Fahrbahnoberflächen durchzuführen, die Ergebnisse zu quantifizieren und eine Empfehlung für die Berücksichtigung abgeleiteter Emissionsfaktoren in den FGSV-Richtlinien RLuS „Richtlinien zur Ermittlung der Luftqualität an Straßen ohne oder mit lockerer Randbebauung“ zu geben. Dazu wurden
• eine umfassende Literaturrecherche und Auswertung zum Thema durchgeführt,
• abriebrelevante Kenngrößen für 27 typische in Deutschland eingesetzte Fahrbahnbeläge bestimmt,
• Laborversuche zum Abriebverhalten von 21 dieser Fahrbahnbeläge durchgeführt,
• Emissionsberechnungen für nicht motorbedingte Partikel (AWAR) mit dem Modell NORTRIP (Non-exhaust road traffic induced particle emission modelling) in seiner Version 3.2 durchgeführt und auch die resultierenden PM10-Straßenabriebemissionsfaktoren ausgewiesen.
• diese Berechnungsergebnisse mit AWAR-Emissionsfaktoren nach DÜRING et al. (2011) bzw. HBEFA4.1 verglichen.
• die NORTRIP-Berechnungsergebnisse des dort integrierten NOx-Tracermodells mit Immissionsmessungen an der Frankfurter Allee in Berlin und Am Neckartor in Stuttgart verglichen,
• Empfehlungen zur Anwendung von NORTRIP gegeben sowie
• aus den NORTRIP-Berechnungen erzeugte PM10-AWAR- und -Straßenabriebemissionsfaktoren für die Anwendung in RLuS abgeleitet.
Folgende in Deutschland am häufigsten eingesetzte Fahrbahnbeläge wurden untersucht:
• Asphaltbeton,
• Offenporiger Asphalt (OPA),
• Gussasphalt,
• DSH (Dünne Asphaltdeckschicht in Heißbauweise),
• Waschbeton und
• Splittmastix-Asphalt (SMA).
Folgende wesentliche Ergebnisse wurden abgeleitet:
• Quantifizierung der Abriebmaße
Abgesehen von der Art des Reifens (insbesondere der Einsatz von Spikereifen), dem Fahrverhalten (Beschleunigungsanteile) und der Fahrgeschwindigkeit (höhere Geschwindigkeiten führen zu höheren Abriebraten) sind weitere wesentliche Faktoren, die sich auf die Partikelerzeugung aus dem Abrieb der Fahrbahn auswirken,
– die Art/Festigkeit und die Korngröße des in der Fahrbahn verwendeten Gesteinmaterials
– eventuell auch die Art des Bindemittels (polymer modifiziertes Bindemittel scheinen positiv zu wirken)
– eventuell bewirkt eine starke Modifizierung des Bindemittels (z. B. Gummimodifizierung) und die sich dadurch einstellenden dickeren Bindemittelfilme eine Verminderung der PM10-Fahrbahnabriebemissionen. Die Höhe der Reduktion hängt hier wahrscheinlich von der Ausbildung der Oberfläche ab.
...
Vorhandene Systeme zum umweltsensitiven Verkehrsmanagement (UVM) in Braunschweig, Erfurt, Potsdam und Wittenberg sowie die Autobahn-Verkehrsbeeinflussungsanlage in der Steiermark wurden für Detailuntersuchungen ausgewählt. Die Untersuchungen zeigen, dass die UVM-Syste-me im Realbetrieb zuverlässig arbeiten, von Behörden, Wirtschaft und Bürgern akzeptiert und zur Minderung der Luftschadstoffbelastung beitragen sowie die umgesetzten Maßnahmen dem Verhältnismäßigkeitsgrundsatz entsprechen. Anhand von Realdaten aus den Untersuchungsgebieten konnten die Maßnahmenwirkungen im Hinblick auf Schwellenwerte und Verkehrsverlagerungen sowie Veränderungen von Verkehrsfluss, Fahrzeiten, Emissionen, Verkehrssicherheit und Immissionen systematisiert und bewertet werden. Weiterhin wurde eine Evaluierung von Vorhersagen und eine Bewertung von Befolgungsraten durchgeführt. Für Hotspots mit einem NO2-Jahresmittelwert nahe am Grenzwert liegen die ermittelten Minderungen bei weichen Maßnahmen, wie Verkehrsverflüssigung und Zuflussdosierung, im einstelligen Prozentbereich. Bezogen auf PM10 liegt die ermittelte Reduzierung im Bereich weniger Überschreitungstage. Höhere Minderungen sind durch Verschärfung der Schwellenwerte oder Einbeziehung härterer Maßnahmen, wie z. B. Verkehrseinschränkungen oder Fahrverbote, erreichbar. Für Hotspots mit einer deutlichen Überschreitung der Grenzwerte sind ohnehin nur härtere UVM-Maßnahmen zielführend. Durch den umweltsensitiven Ansatz können Schwellenwerte und Maßnahmenwirkungen optimiert auf die Zielvorgaben angepasst werden. Die Kosten- und Wirkungsanalysen zeigen, dass die umgesetzten UVM-Maßnahmen entweder ein gesamtwirtschaftlich positives Kosten-Nutzen-Verhältnis oder zumindest deutliche Vorteile zugunsten der gewählten temporären gegenüber einer dauerhaften Aktvierung haben. Für die Behörden wurden Empfehlungen zum Aufbau und Einsatz von UVM-Systemen und -Maßnahmen in Abhängigkeit der örtlichen und immissionsseitigen Randbedingungen gegeben.
Es wurde nach aktueller Literatur zum Thema recherchiert und diese beschafft. Insbesondere wurden die für die Aufgabenstellung relevanten Dokumente der Arbeitsgruppe "Particle Measurement Programme" (PMP) ausgewertet. Das Suchergebnis bestand aus ca. 200 Literaturhinweisen. Davon wurden anhand der Titel und der Kurzfassungen die im Literaturnachweis des Hauptberichtes aufgeführten Publikationen ausgewählt und ausgewertet. Die wesentlichen Ergebnisse in komprimierter Form können wie folgt dargestellt werden: Neben den Auspuffemissionen nehmen beim Verkehr die Partikelemissionen infolge der Abriebe sowie der fahrzeuginduzierten Aufwirbelung, also die Nicht-Abgas Partikelemissionen, eine entscheidende Rolle ein. Häufig werden diese auch als Aufwirbelungs- und Abriebemissionen (AWAR) bezeichnet. Die Abriebe können dabei als direkte Emissionen wirken aber auch durch eine Zwischendeposition das Aufwirbelungspotenzial erhöhen. Die ausgewerteten Literaturen zeigen zudem auf, dass sehr komplexe Abhängigkeiten für die Partikelgrößen und die Menge emittierter Partikel infolge der Abriebe beobachtet wurden. Es sind verschiedene Tracersubstanzen für Reifen- und Bremsabrieb bekannt. Kupplungsabrieb scheint keine Relevanz zu haben. Toxikologische Untersuchungen weisen auf gesundheitliche Wirkungen der Abriebe hin, ohne dass es nach Ansicht der Autoren derzeit einen direkten (kausalen) Nachweis gibt. Es werden Reifenabrieben geringere nachteiligere Gesundheitseffekte zugesprochen als anderen Partikelanteilen (vor allem durch Dieselpartikel). Es wurde u.a. eine qualitative tabellarische Übersicht über die verfügbaren Messmethoden zur AWAR Messung erstellt. In dieser Tabelle wurden für die Bewertung jeweils die bestmöglichen Anwendungen zu Grunde gelegt. Zusammenstellungen von Partikelmessungen mit entsprechender Quellenangabe werden ebenso gegeben wie Bandbreiten von Partikelemissionsfaktoren.
Es wurde anhand einer ersten Auswertung der Messdaten an der autobahnähnlichen B10 bei Karlsruhe und anhand einer Systematisierung weiterer zugänglicher PM10-Messergebnisse an Straßen im Anwendungsbereich des Merkblattes über Luftverunreinigungen an Straßen (MLuS 02) eine bessere Anpassung des existierenden Verfahrens zur Berechnung verkehrsbedingter PM10-Emissionen im Sinne einer schnell verfügbaren pragmatischen Zwischenlösung für diese Straßen erarbeitet. Mittels der NOx-Tracermethode konnten für die B10 bei Karlsruhe PM10-Emissionsfaktoren abgeleitet werden. Diese betragen im Wochenmittel 81 mg/(km Fzg), wobei an trockenen Werktagen 92 mg/(km Fzg) und an trockenen Sonntagen 59 mg/(km Fzg) ermittelt wurden. Anhand der Auswertung der Inhaltsstoffanalysen wurde u.a. abgeschätzt, dass an trockenen Werktagen ca. 50 % der PM10-Emissionen durch Auspuffemissionen realisiert werden, ca. 20 % durch Reifenabrieb, weniger als 1 % durch Bremsabriebe und ca. 30 % durch Straßenabriebe sowie Wiederaufwirbelung von Schmutzeintrag. Es wurde in diesen Überlegungen angenommen, dass sich die PM10-Emissionen einer Straße aus den Emissionen des Auspuffs sowie dem Anteil aus Abrieb und dem der Aufwirbelung infolge Reifen-, Brems-, Kupplungsbelags- und Straßenabrieb sowie Straßenstaub zusammensetzen. Dabei werden die Emissionen aus dem Auspuff bestimmt nach dem Handbuch für Emissionsfaktoren des Umweltbundesamtes (HBEFA). Die Emissionen für Abrieb und Aufwirbelung wurden auf Basis von aus vorliegenden Messergebnissen abgeleiteten Emissionsfaktoren (getrennt nach PKW und LKW) berechnet. Entsprechende Emissionsfaktoren werden angegeben. Unterschieden wird nach nicht überdeckelten Straßen und Tunnelstrecken. Für Tunnelstrecken, auf denen die Emissionen offenbar geringer sind als auf offenen Straßen, werden niedrigere PKW-Emissionsfaktoren angesetzt als für Straßen auf freier Strecke. Unterschieden wird auch weiterhin in Straßen mit gutem bzw. schlechtem Straßenzustand. Eine eindeutige Geschwindigkeitsabhängigkeit konnte aus den verfügbaren Daten nicht abgeleitet werden. Auch die Regenabhängigkeit ist weiterhin nicht eindeutig geklärt. Für die Bestimmung der Kurzzeitbelastung nach 22. BImSchV für PM10 und CO wurde auf Basis der Auswertung von Messdaten ein statistischer Zusammenhang abgeleitet für die Berechnung der Anzahl von Überschreitungen von 50 -µg PM10/m-³ als Tagesmittelwert beziehungsweise zur Bestimmung des maximalen gleitenden CO-8h-Wertes aus dem jeweiligen Jahresmittelwert. Der Bericht wurde um eine Zusatzuntersuchung zum Vergleich der PM10-Konzentrationen aus Messungen an der A1 bei Hamburg und Ausbreitungsberechnungen erweitert. Diese Zusatzuntersuchung enthält als Anhänge eine Fehlerdiskussion, eine Darstellung des Berechnungsverfahrens PROKAS zur Bestimmung verkehrserzeugter Schadstoffbelastungen sowie die MLuS 02-Protokolle zum PC - Berechnungsverfahren zur Abschätzung von verkehrsbedingten Schadstoffimmissionen nach dem Merkblatt über Luftverunreinigungen an Straßen der Forschungsgesellschaft für Straßen- und Verkehrswesen, Version 5.0j vom 26.02.2002.
Luftschadstoffmessungen im gesamten Bundesgebiet zeigen, dass die in der „Richtlinie 2008/50/EG über Luftqualität und saubere Luft für Europa“ festgelegten Grenzwerte für einige Luftschadstoffe insbesondere an verkehrsnahen Standorten zum Teil stark überschritten oder erreicht werden (Hot-Spots). An vielen dieser Hot-Spots liegen messtechnisch nachgewiesene Überschreitungen des NO2-Jahresmittelgrenzwertes von 40 µg/m³ vor und werden von Modellrechnungen auch für die nächsten Jahre prognostiziert.
In der vorliegenden Untersuchung wurden exemplarisch für die Ballungsräume Hamburg, Duisburg und Frankfurt am Main verkehrsträgersübergreifende Emissions- und Immissions-modellierungen für den Hintergrund in einer Auflösung von 500 m mal 500 m vorgenommen. Für diese Ballungsräume wurden detaillierte Emissionsberechnungen für die Verkehrsträger Straße, Schiene, Schiff und Flug für das Analysejahr 2016 erstellt.
Zusätzlich wurden spezifische Szenarien im Verkehrssektor für die Jahre 2025 und 2030 entwickelt. Dies beinhaltet die Trendprognose und im Vergleich mit dem Trend vier verschiedene Szenarien:
Szenario 0: Trendszenario
Szenario I: Verbesserung Motorentechnik, verstärkte Nutzung alternativer Kraftstoffe und Elektromobilität
Szenario II: Verkehrsverlagerung im Güterverkehr
Szenario III: Verkehrsvermeidung / Optimierte Verkehrsflüsse
Szenario IV: Maximales Kombi-Szenario
Um die Auswirkung der Emissionsänderungen auf die Luftqualität im städtischen Hintergrund zu bewerten, wurden für das Analysejahr 2016 und für die Szenarien Ausbreitungsrechnungen mit dem EURAD Modellsystem (Europäisches Ausbreitungs- und Depositionsmodell) in den Modellgebieten durchgeführt.
Die Modellrechnungen mit dem EURAD Modell wurden für einen kompletten Jahreszyklus 2016 und für die Prognose Szenarien durchgeführt.
Die wichtigsten Befunde für die Luftqualität im städtischen Hintergrund sind Folgende:
Analyse Jahr 2016:
Die Belastung der Luft durch Emissionen im Verkehrssektor ist besonders bei den Stickoxiden ausgeprägt.
Im Ballungsraum Hamburg ist der Schiffsverkehr und der Straßenverkehr dominant
Im Ballungsraum Duisburg ist der Straßenverkehr besonders ausgeprägt
Im Ballungsraum Frankfurt ist der Straßenverkehr und der Flugverkehr am stärksten ausgeprägt.
Der Belastung durch den Schienenverkehr spielt in allen drei Ballungsräumen nahezu keine Rolle
Szenarien:
Es sind deutliche Reduktionen in den Stickoxiden durch prognostizierte verminderte Emissionen besonders im Straßenverkehr für alle Ballungsräume zu sehen.
Im Ballungsraum Hamburg ist zusätzlich noch eine verminderte Belastung durch SO2 im Schiffsverkehr zu sehen.
Im Ballungsraum Frankfurt sind höhere SO2 Konzentrationen durch erhöhte Emissionen im Flugverkehr zu beobachten.
Die stärksten Veränderungen (Minderungen) sind für die Szenarien I und für die Kombination aller Szenarien (IV) zu sehen.
Eine Verbesserung der Luftqualität wird bereits deutlich durch die bereits heute beschlossenen Maßnahmen (Szenario 0) erzielt.
Die zusätzlichen Maßnahmen (Szenarien I bis IV) bewirken darüber hinaus nur geringe Minderungen der Schadstoffbelastung im mittleren Hintergrundniveau der Ballungsräume