Refine
Keywords
- Prüfverfahren (2)
- Schicht (2)
- Bewertung (1)
- Deutschland (1)
- Development (1)
- Entwicklung (1)
- Evaluation (assessment) (1)
- Forschungsbericht (1)
- Germany (1)
- Kornverteilung (1)
Institute
- Abteilung Straßenbautechnik (1)
- Sonstige (1)
Für die Kontrolle der Herstellung von Tragschichten ohne Bindemittel (ToB) im Straßenoberbau wird eine Referenzdichte benötigt, die in Deutschland und vielen anderen europäischen Staaten durch den Proctorversuch nach DIN EN 13286-2 ermittelt wird. Während eines Proctorversuches wird mit einem Fallgewicht, das auf die Prüfkörperoberfläche nach festgesetzten Parametern fällt, der Hohlraumanteil einer Versuchsprobe reduziert und die Raumdichte erhöht. Durch Wasserzugabe wird der Verdichtungsprozess gefördert, wobei es für eine Versuchsprobe einen Wassergehalt gibt, bei dem sie sich in Abhängigkeit von der eingesetzten Verdichtungsenergie optimal verdichten lässt und eine maximal erreichbare Trockendichte erzielt. Aufgrund des relativ geringen Feinanteils der Sieblinie eines Baustoffgemisches für ToB ist der Proctorversuch hier jedoch nur eingeschränkt verwendbar, da sich vollständige Verdichtungskurven aufgrund von Entwässerungsprozessen während des Versuches häufig nicht generieren lassen. Statt konvexen werden auch konkave Kurven, lineare Anstiege oder nicht zweckdienliche Kurvenverläufe gemessen, die eine Bestimmung eines optimalen Wassergehaltes und einer Trockendichte nach der gängigen Auswertemethode (Kurvenmaximum) nicht ermöglichen. Zur Herstellung einer ToB werden Baustellenfahrzeuge und -geräte eingesetzt, die zur Verdichtung die Parameter Frequenz, Amplitude und Eigenlast nutzen. Konträr dazu erfolgt die Laborverdichtung, die für die Verdichtung entsprechend Proctorverfahren ein Fallgewicht nutzt. Neben der Tatsache, dass der Proctorversuch für dränierende Baustoffe nicht optimal geeignet ist, besteht somit eine Diskrepanz zwischen der Labor- und der In-situ-Verdichtung. Neben dem Proctorverfahren stehen europäisch genormte Laborverdichtungsverfahren zur Verfügung, die Verdichtungsparameter nutzen, die der In-situ-Verdichtung entsprechen. Aufgrund der vorgestellten Problematik des Proctorversuches wurde daher ein umfassendes Forschungsprojekt durchgeführt, welches das Ziel hatte, Lösungsansätze für dränierende Baustoffe während der Laborverdichtung zu finden. Dies beinhaltete im primären Sinne die Suche nach einem alternativen Verdichtungsverfahren, das die Problematik für dränierende Baustoffe nicht aufweist und das mehr der In-situ-Verdichtung entspricht. Das Forschungsprojekt identifizierte das Vibrationshammerverfahren nach DIN EN 13286-4 als das Verfahren, welches sehr vergleichbare Ergebnisse zum Proctorverfahren liefert. Weiterhin ist dieses Verfahren sehr in-situ konform, leicht in der Handhabung und weniger kostenintensiv. Anhand von Literaturquellen konnte die scheinbare Kohäsion als Ursache für konvexe Verdichtungskurven identifiziert werden. Zudem konnte gezeigt werden, dass Auswertevorgaben für derartige Kurvenverläufe existieren. Weiterhin besteht eindeutig die Möglichkeit ofentrockene Proben zu verdichten und dennoch ein vergleichbares oder leicht erhöhtes Trockendichteergebnis im Vergleich zu einer optimalen Verdichtung zu erzielen. Nachteil hierbei ist jedoch die fehlende Angabe für den Wassergehalt auf der Baustelle. Daher scheint die Vibrationshammerverdichtung mit einem Wassergehalt knapp über der Trockenverdichtung, die beide notwendigen Parameter liefert, ein erfolgversprechender Ansatz zur Lösung der Problematik des Proctorversuches für ToB-Baustoffgemische zu sein.
In Deutschland ist zur Bestimmung der Referenzdichte ungebundener Baustoffgemische der Proctorversuch nach DIN EN 13286-2 [1] festgelegt. Die Laborpraxis hat gezeigt, dass der Proctorversuch für dränierende Baustoffgemische, die für ungebundene Schichten verwendet werden, nicht optimal geeignet ist. Im Forschungsvorhaben FE-Nr. 06.099/2012/EGB [2] wurde die Eignung des Vibrationshammerverfahrens nach DIN EN 13286-4 [3] als alternatives Laborverdichtungsverfahren untersucht und festgehalten, dass dieses Laborverdichtungsverfahren in-situ konform verdichtet und sehr vergleichbare Ergebnisse zum Proctorverfahren unter Verwendung eines festgelegten Wassergehaltes erzielt. Hinzu kommt eine leichtere Handhabung, kostengünstigere Anschaffung und eine Prüfdurchführung, die deutlich weniger zeitintensiv ist. Ein weiterer Vorteil dieses Verdichtungsverfahren ist, dass es wahrscheinlich zu einer geringeren Kornverfeinerung während der Probenverdichtung neigt [4]. Weiterhin wurde festgestellt, dass der optimale Wassergehalt des Vibrationshammerverfahrens etwa 5 bis 10 Prozent unterhalb dem des Standard-Proctorversuches lag [5] und somit etwa dem optimalen Wassergehalt eines modifizierten Proctorversuches (nahezu in-situ konform) entspricht. Seit vielen Jahren wird die Wasserdurchlässigkeit von SoB-Gemischen im Labor mit einer in der DIN 18130-1 [6] beschriebenen Methode bestimmt, bei denen die Wasserdurchlässigkeit im gesättigten Probenzustand ermittelt wird. Während der Herstellung und der Nutzungsphase einer SoB hingegen werden immer ungesättigte Zustände vorliegen, weshalb die Ergebnisse des Laborversuches nach DIN 18130-1 [6], nicht der in-situ Wasserdurchlässigkeit entsprechen. Durch die Entwicklung des Standrohr-Infiltrometerverfahrens nach TP Gestein-StB, Teil 8.3.1 [7], wurde versucht, die in-situ Wasserdurchlässigkeit im Labor besser abzubilden, beispielsweise, indem zum einen Probekörper mit modifizierter Proctorenergie hergestellt werden und zum anderen Wassergehalte während der Probenherstellung zum Einsatz kommen, die unterhalb des optimalen modifizierten Wassergehaltes (0,8 · mod. wPr < w < mod. wPr) liegen. In-situ konforme Prüfbedingungen auf Laborebene sind notwendige Voraussetzungen, um hier Messergebnisse zu generieren, die mit Feldergebnisse vergleichbar sind. Sowohl für die Referenzdichte (Proctordichte) des Verdichtungsgrades, der einen Rückschluss auf die geleistete Verdichtungsarbeit ermöglicht, als auch für die Wasserdurchlässigkeit stehen bis dato Prüfmethoden im Labor zur Verfügung, die aufgrund ihrer Verfahrensparameter nicht den Feldbedingungen entsprechen und häufig nicht vergleichbare Ergebnisse liefern. Entsprechend ist es notwendig mit performance orientierten Prüfverfahren diesen Umstand zu optimieren. Bzgl. der Verdichtung von ungebundenen Baustoffgemischen bietet sich womöglich das Verdichtungsverfahren nach DIN EN 13286-4 [3] als zukunftsweisendes Laborprüfverfahren an, das nach ersten Erkenntnissen besser zur Verdichtung von ungebundenen Gemischen geeignet ist. Zur Weiterentwicklung des Kenntnisstandes zum Vibrationshammer war zu untersuchen, welchen Einfluss die Verwendung eines Vibrationshammers auf die Kornzertrümmerung hat und wie eine Probenherstellung im Verdichtungstopf C (250 mm) mittels Vibrationshammer zur Messung des Infiltrationsbei-wertes ki(10) erfolgen kann, da dies bis dato nicht in der DIN EN 13286-4 [3] beschrieben wird. Ergänzend sollten diese beiden Aspekte auch unter Verwendung unterschiedlicher Vibrationshämmer mit unterschiedlicher Schlagenergie untersucht und bewertet werden. Zu Beginn des Forschungsvorhabens wurde eine Literaturstudie durchgeführt, über die dargelegt werden konnte, dass die Fragestellungen des Forschungsvorhabens bzgl. der Kornzertrümmerung und Verdichtung von Baustoffen im Verdichtungstopf C unter Verwendung eines Vibrationshammers teils, wenn auch thematisch anders gelagert, behandelt wurden und gute Ansätze für das weitere Vorgehen innerhalb des vorliegenden Forschungsprojektes lieferten. Primäre Elemente dabei waren die Verdichtung in einem elf inch (279 mm) Probentopf mittels Vibrationshammer nach DRENEVICH, EVANS und PROCHASKA [15] und der Verfeinerungsgrad nach SCHREIBER [25]. Entsprechend wurden diese Ansätze in das Forschungsvorhaben integriert, um die Eignung des Vibrationshammerverfahrens als zukunftsorientiertes Laborverdichtungsverfahren von ungebundenen Gemischen weiter zu belegen. In das Forschungsvorhaben wurden vierzehn ungebundene Baustoffgemische eingebunden, an denen eine Materialcharakterisierung durchgeführt wurde. Aus dieser ging hervor, dass die Baustoffgemische anforderungsgerechte Eigenschaften entsprechend dem nationalen Regelwerk aufwiesen und aufgrund ihrer variablen technischen Bandbreite als charakteristische Stellvertreter handelsüblicher Baustoffgemische eingestuft werden konnten. Erste Laborversuche zur Fragestellung der erzielbaren Trockendichten durch Proctorverdichter und Vibrationshammer und zur Kornzertrümmerung erfolgten an 0/32 mm Korngemischen ohne Überkorn. Über diese Versuche konnte gezeigt werden, dass der Einsatz eines Vibrationshammers mit einer Schlagenergie von 8,3 Joule zu einer leichten Trockendichtezunahme (2 bis 15 %) für rezyklierte und industrielle Baustoffgemische im Vergleich zum Proctorergebnis führte und sich eine Ergebniszunahme unter Verwendung eines Vibrationshammers mit nahezu doppelter Schlagenergie (16,8 Joule) für alle untersuchten Baustoffgemische einstellte (natürliche Baustoffgemische: 2 bis 7 %, rezyklierte und industrielle Baustoffgemische: 16 bis 31 %). Bzgl. der bestimmten optimalen Wassergehalte zeigten rezyklierte und industrielle Baustoffgemische unter Einsatz eines Vibrationshammers tendenziell eine leichte Reduktion und natürliche Gesteinskörnungen einen nahezu gleichen Ergebniswert wie beim Proctorverfahren. Im Folgenden wurde die im FE-Nr.06.0099/2012/EGB [2] aufgestellte These, dass Baustoffgemische mit einem festgelegten Wassergehalt von 3 M.-% bzw. 5 M.-% verdichtet werden können und dennoch gleichwertige Trockendichten, wie bei einer Verdichtung mit einem optimalen Wassergehalt, erzielen, überprüft. Vorteil bei dieser Vorgehensweise wäre für viele Baustoffgemische die Vermeidung einer Wasserdränage während des Verdichtungsversuches und eine Reduktion der Einzelprobenanzahl. Zwischen der Vorgehensweise einer Verdichtung mit optimalen Wassergehalt und eines festgelegten Wassergehaltes konnten sowohl für das Proctorverfahren als auch für das Vibrationshammerverfahren Korrelationskoeffizienten minimal kleiner 1 bestimmt werden. Die Trockendichtekorrelationen zwischen den Vibrationshammerergebnissen (fester Wassergehalt) und den Proctorergebnissen (optimaler Wassergehalt) ergaben Korrelationskoeffizienten oberhalb von 0,8. Bei der Verwendung eines festgelegten Wassergehaltes für das Vibrationshammerverfahren wurde eine Ergebniszunahme bei der Trockendichte von gemittelt ca. 6,5 % (Vibrationshammervariante A mit 8,3 Joule) bzw. ca. 11,5 % (Vibrationshammervariante B mit 16,8 Joule) festgestellt. Anhand von Siebanalysen, die nach der Probenherstellung mittels Vibrationshammervariante A durchgeführt wurden, konnte gezeigt werden, dass ein festgelegter Wassergehalt zu einer vermehrten Kornzertrümmerung für industrielle und RC-Baustoffgemische, im Vergleich zu einer Verdichtung mit einem optimalen Wassergehalt, führt. Für die untersuchten natürlichen Baustoffgemische stellte sich eher ein konstantes bis gegenläufiges Ergebnisbild bzgl. der Kornzertrümmerung ein. Beim Einsatz der Vibrationshammervariante B mit einer Schlagenergie von 16,8 Joule wurde nahezu durchweg eine stärkere Zunahme der Kornzertrümmerung unter Verwendung eines festgelegten Wassergehaltes belegt. Abschließend wurde untersucht, wie eine Baustoffgemischverdichtung mit einem Vibrationshammer in einem 250 mm Verdichtungstopf durchgeführt werden kann, welche Trockendichten erzielt werden, welche Kornzertrümmerung dabei auftritt, welche Infiltrationsbeiwerte ki(10) mit derart hergestellten Probekörpern erzielt werden und ob die potenziell auftretende Kornzertrümmerung evtl. einen Einfluss auf den Infiltrationsbeiwert hat. Die Ergebnisse der dazu durchgeführten Untersuchungen wurden im Vergleich zu Proctorversuchen bewertet. Die Trockendichten der für die Infiltrationsmessungen hergestellten Probekörper zeigten, auf das jeweilige Verdichtungsverfahren und ungebundene Baustoffgemisch bezogen, sehr geringe Standardabweichungen. Entsprechend lieferten die Verdichtungsverfahren reproduzierbare Trockendichten. Für das Vorgehen mittels Proctorverfahren konnte eine Trockendichtezunahme zwischen ca. 4 und 25 % (im Mittel ca. 12 %) beim Wechsel von Verdichtungstopf B (Ø 150 mm) zu C (Ø 250 mm) bestimmt werden, wobei hierbei beachtet werden muss, dass die Probeherstellung im Verdichtungstopf C mit modifizierter Proctorenergie erfolgte. Eine ähnliche Tendenz zeigte sich beim Wechsel von Verdichtungstopf B zu Verdichtungstopf C unter Einsatz des Vibrationshammers A mit 8,3 Joule Schlagenergie. Hier lag die Ergebniszunahme bzgl. der Trockendichte zwischen ca. 2 und 14 % (im Mittel bei ca. 6 %). Konträr dazu zeigte sich das Ergebnisbild durch den Wechsel von Verdichtungstopf B zu Verdichtungstopf C unter Verwendung des Vibrationshammers B mit 16,8 Joule Schlagenergie. Hier kam es zu einer Abnahme der Trockendichteergebnisse zwischen ca. 1 und 7 % (im Mittel bei ca. 4 %). Die mit dem Proctor- bzw. Vibrationshammer hergestellten Probekörper zeigten überwiegend einen Infilrationsbeiwert oberhalb, zum Teil weit oberhalb, von 10-6 m/s. Da die Ergebnisschwankungen der Infiltrationsresultate, die mit Proctor- bzw Vibrationshämmern hergestellt wurden, relativ gering ausfielen, konnte mit Ausnahme weniger Messwerte kein verdichtungsverfahrensabhängiger Einfluss auf das Infiltrationsergebnis aufgezeigt werden. Ergänzend wurden auch Siebanalysen nach der Probenherstellung zur Bestimmung der auftretenden Kornzertrümmerung vorgenommen, die die folgenden Interpretationen zu-ließen. Das modifizierte Proctorverfahren bedingt während der Probekörperherstellung im 250 mm Verdichtungstopf C den größten und der Vibrationshammer A mit einer Schlagenergie von 8,3 Joule den geringsten Einfuss auf die Kornzertrümmerung. Verfahrensunabhängig zeigten industrielle und RC-Baustoffgemische eine größere Tendenz zur Kornzertrümmerung als natürliche Baustoffgemische. Anhand der Nachsiebungen bzw. berechneten Verfeinerungsgrade konnte kein direkter mathematischer Zusammenhang zwischen An- oder Abstieg des Infiltrationsbeiwertes und An- oder Abstieg an Kornzertrümmerung nachgewiesen werden. Das Forschungsvorhaben konnte weiterführend die Eignung des Vibrationshammerverfahrens als Alternative zum Proctorverfahren aufzeigen und ermöglichte die Abfassung eines Entwurfs einer TP Gestein-StB zur Herstellung von Prüfkörpern mit einem Vibrationshammer für Infiltrationsversuche im 250 mm Verdichtungstopf. Auch die These einer Verdichtung mit einem festgelegten Wassergehalt konnte weiter ausgebaut werden. Damit verbunden sind eine leichte Zunahme an Trockendichte und Kornzertrümmerung. Infiltrationsversuche an Proben, die mit ähnlichen Wassergehalten hergestellt wurden und eine ähnliche Kornzertrümmerung aufwiesen, zeigten jedoch, dass die Kornzertrümmerung keinen Einfluss auf den Infiltrationsbeiwert der untersuchten Proben hatte.
Mineralische Restmassen aus Bautätigkeiten sowie Gesteinskörnungen aus industriellen Prozessen und der thermischen Verwertung von Siedlungsabfällen stellen deutschlandweit einen erheblichen Massenstrom dar. Im Sinne der Nachhaltigkeit ist es geboten und durch den Gesetzgeber vorgegeben (vgl. KrWG von 2012), derartige Materialien möglichst hochwertig als Baustoffe wiederzuverwenden. Besonders geeignet hierfür ist der Erdbau, in dem kontinuierlich vergleichsweise große Massen an Baustoffen benötigt werden. Grundvoraussetzung einer Verwendung ist dabei, dass die Baustoffe sowohl aus umwelt- als auch bautechnischer Sicht geeignet sind und vertragssicher und regelwerkskonform eingesetzt werden können.
Bei mineralischen Sekundärbaustoffen, die bereits seit den Anfängen in den 1980er Jahren zunehmend an Bedeutung als Erdbaustoffe gewinnen, bestehen bei der erdbautechnischen Prüfung mineralischer Sekundärbaustoffe im Labor und im Feld im Zusammenhang mit einigen Prüfverfahren derzeit allerdings noch Schwierigkeiten, die im Hinblick auf ihre vertragssichere und anforderungsgerechte Anwendung dringend geklärt werden müssen.
Die Schwierigkeiten und Probleme, die im Zusammenhang mit der Klassifizierung sowie der Eignungs- und Kontrollprüfung von mineralischen Sekundärbaustoffen in der Praxis auftreten, wurden zu Beginn dieses Projektes zunächst identifiziert und erörtert. Hierzu wurde eine umfangreiche Literaturrecherche sowie eine Umfrage bei am Bau Beteiligten Firmen und Institutionen durchgeführt. Die Ergebnisse dieser beiden Arbeitspakete zeigen, dass die Versuchstechnik des Erdbaus zwar grundsätzlich für mineralische Sekundärbaustoffe geeignet ist. Dennoch können vor allem bei mineralischen Sekundärbaustoffen im Zusammenhang mit Bestimmung der Proctordichte im Proctorversuch sowie der indirekten Verdichtungskontrolle mittels Plattendruckversuchen unter Verwendung der Tabellenwerte der ZTV E-StB 17 Schwierigkeiten und Probleme auftreten, die gar zum Ausschluss von Sekundärbaustoffen über den Bauvertrag führen können.
Im weiteren Verlauf wurden an fünf natürlichen Baustoffen und acht mineralischen Sekundärbaustoffen umfangreiche klassifizierende Untersuchungen, Laborversuche zum Verdichtungsverhalten sowie zum Last-Verformungs-Verhalten unter eindimensionaler Kompression und dreiaxialer Scherbeanspruchung sowie Plattendruckversuche nach großtechnischer Verdichtung durchgeführt. Die klassifizierenden Untersuchungen haben gezeigt, dass zwischen natürlichen Baustoffen und Sekundärbaustoffen Unterschiede hinsichtlich ihrer granulometrischen Eigenschaften bestehen. Letztere bestehen allerdings auch zwischen verschiedenen natürlichen Baustoffen sowie zwischen unterschiedlichen mineralischen Sekundärbaustoffen. Da viele Prüfverfahren des Erdbaus auf Erfahrungen an natürlichen Baustoffen beruhen und sich mineralische Sekundärbaustoffe hinsichtlich ihrer Granulometrie häufig von natürlichen Baustoffen unterscheiden, kommt es vor allem bei mineralischen Sekundärbaustoffen zu den genannten Auffälligkeiten. Besitzen natürliche Baustoffe eine vergleichbare Granulometrie, treten die Auffälligkeiten jedoch in gleicher Weise auf.
Trotz bestehender Unterschiede in den Eigenschaften der Einzelkörner zeigen die Ergebnisse der Versuche zum Last-Verformungs-Verhalten unter eindimensionaler Kompression und drei-axialer Scherbeanspruchung sowie der Plattendruckversuche nach großtechnischer Verdichtung, dass natürliche Baustoffe und mineralische Sekundärbaustoffe mit ähnlicher Kornabstufung vergleichbare erdbautechnische Eigenschaften aufweisen. Die Schwierigkeiten und Probleme im Zusammenhang mit der Klassifzierung, der Eignungsprüfung sowie der indirekten Verdichtungskontrolle mittels Plattendruckversuchen unter Verwendung der Tabellenwerte der ZTV E-StB 17 stellen somit keine Minderung der erdbautechnischen Eignung von mineralischen Sekundärbaustoffen dar.
Abschließend wurden auf Basis der Versuchsergebnisse Vorschläge für die Weiterentwicklung des erdbautechnischen Regelwerkes erarbeitet. Allgemeingültige Richtwerte zur indirekten Verdichtungskontrolle mittels Plattendruckversuchen konnten dabei allerdings weder für bestimmte Materialgruppen noch für bestimmte Materialarten angegeben werden.