Refine
Keywords
- Radar (3)
- Detection (2)
- Messung (2)
- Prüfverfahren (2)
- Test method (2)
- Apparatus (measuring) (1)
- Ausführungsfehler (1)
- Automatic (1)
- Automatisch (1)
- Balken (1)
Institute
Zerstörungsfreie Prüfverfahren (ZfP) zur Messung der Betondeckung sind seit Jahrzehnten bei der Ermittlung des Istzustands von Bestandsbauwerken und als Werkzeug zur Qualitätssicherung sowohl im Neubau als auch in der Betoninstandsetzung fest etabliert. Um zuverlässige Prüfaussagen zu erhalten, ist es zunächst erforderlich, durch die richtige Anwendung eines geeigneten Verfahrens genaue Messergebnisse zu erzeugen und diese dann richtig zu bewerten, z. B. durch einen statistischen Nachweis der Mindestbetondeckung. Daher konzentriert sich dieser Beitrag zunächst auf die Grundlagen von ZfPBauâ€Verfahren zur präzisen Messung der Betondeckung. Hierbei sind magnetisch induktive Verfahren von radarbasierten Verfahren zu unterscheiden, deren jeweilige Möglichkeiten und Grenzen dargelegt werden. Im zweiten Teil wird die erzielbare Genauigkeit mit unterschiedlichen Geräten nach magnetisch induktivem Messprinzip anhand von systematischen Untersuchungen betrachtet. Dabei wird quantifiziert, mit welchen Abweichungen zu rechnen ist, wenn der Durchmesser nicht genau bekannt ist und dicht benachbarte Stäbe das Messergebnis beeinflussen. Abschließend werden die verminderten Abweichungen quantifiziert, wenn geräteeigene Nachbarstabskorrekturen verwendet werden. Das Ziel dieses Beitrags ist kein "Gerätetest", vielmehr soll am Beispiel verschiedener Geräte auf der Basis unterschiedlicher Messprinzipien gezeigt werden, welche Genauigkeit unter welchen Einflussgrößen bei realen Messungen zu erzielen ist.
Verkehrsbauwerke im Zuge von Bundesfernstraßen werden gemäß Stand der Technik nach DIN 1076 untersucht. Sofern bei der handnahen Prüfung Schäden festgestellt werden, deren Ursache und Umfang unklar sind, erfolgt die Durchführung einer objektbezogenen Schadensanalyse (OSA) nach dem Leitfaden der BASt. Zerstörungsfreie Prüfverfahren im Bauwesen (ZfPBau-Verfahren) werden bislang nur in geringem Umfang eingesetzt. Detaillierte Untersuchungen mit Bauwerkscannern werden im Rahmen der OSA bislang gar nicht eingesetzt. Die Aufgabenstellung dieses Forschungsvorhabens ist die Integration von ZfPBau-Verfahren in Form von Handmessungen und automatisierter Datenaufnahme mit Baustellenscannern in den Untersuchungsprozess nach DIN 1076 bzw. der nachfolgenden OSA. Das Gesamtziel bestand darin, die Leistungsfähigkeit von Bauwerkscannern für Prüfaufgaben im Rahmen der OSA zu verbessern und ihre Einsetzbarkeit praxisorientiert zu gestalten. Dies wurde an geeigneten Fragestellungen und Bauwerken gezeigt. Die Vorgehensweise, um den bestmöglichen Nutzen aus dem Einsatz des OSSCAR-Scanners zu erreichen, konzentriert sich auf die automatisierte Datenaufnahme und kombinierte Datenauswertung durch Vergleich von Radar, Ultraschall und Wirbelstrom. Um die automatisierte Datenaufnahme zu verbessern, wurden Geräteparameter wie Messpunktabstand, Messzeit an einem Punkt und Verfahrensgeschwindigkeit der Achsen den Bauteilbedingungen bestmöglich angepasst. Darüber hinaus wurde eine Strategie erarbeitet, die es erlaubt, Rüstzeit und Messzeit des Scanners zu verkürzen. Durch den Vergleich der Ergebnisse der Verfahren Radar, Ultraschall und Wirbelstrom, die auf der Basis von kongruenten Messflächen gewonnen wurden, ist der Mehrwert an Information hinsichtlich der inneren Konstruktion festgestellt worden.
Die Überwachung und Prüfung von Brücken im Zuge von Bundesfernstraßen erfolgt in Deutschland nach der DIN 1076 in festgelegten Zeitintervallen. Im Zuge der "Objektbezogenen Schadensanalyse" (OSA) hat sich der Einsatz kombinierter zerstörungsfreier Prüfverfahren wie Ultraschallecho, Impakt-Echo und Radar an mehreren Spannbetonbrücken als geeignet erwiesen, Umfang und Ursache ungeklärter Schäden zuverlässig zu ermitteln. Diese Verfahrenskombination wurde auch für die Untersuchungen an der Spannbetonbrücke im Zuge der Autobahn A1 bei Hagen verwendet. Dazu wurden von der BAM scannende Messwerterfassungssysteme entwickelt, mit denen die Prüfverfahren automatisiert für großflächige Untersuchungen angewendet werden können. Erstmals wurde ein Saugscanner verwendet, der zerstörungsfrei am Bauwerk befestigt werden kann. Der Bericht zeigt, wie die großflächigen Ergebnisse der Untersuchung bildgebend dargestellt werden können. Dem Ingenieur ist es damit möglich, einen Bezug zu Bestandsplanunterlagen herzustellen. Sofern keine Bestandsplanunterlagen existieren, können diese unter bestimmten Randbedingungen aus den Messergebnissen rekonstruiert werden. Bei der Längsspannung der Brücke handelt es sich um das System Baur-Leonhardt, das aus steifen Blechkästen besteht, in die Litzen eingelegt und zementös verpresst wurden. Über diese Konstruktion lagen noch keine Erfahrungen mit zerstörungsfreien Prüfverfahren vor. Deshalb wurden Modellrechnungen für verschiedene Verpresszustände durchgeführt, um die zu erwartenden Ergebnisse vorab zu ermitteln. Die Messergebnisse machen deutlich, dass mit den verwendeten Verfahren der Verlauf der Spannglieder sehr präzise dargestellt werden kann und dass die Lage der Umlenkstellen, die dickeres Blech in zwei Lagen aufweisen, zuverlässig bestimmt werden kann. An der Brücke wurde erstmals großflächig die Phasenauswertung von Ultraschallsignalen zur Ortung von Verpressfehlern durchgeführt. Die Messungen ergaben keine Hinweise auf Verpressfehler. Die Richtigkeit dieser Aussage wurde durch das Öffnen der Spannglieder im Zuge des Abrisses bestätigt.
Dieses Forschungsvorhaben beschäftigt sich mit der Eignung des Radarverfahrens hinsichtlich der Prüfaufgabe Betondeckungsmessung. Das Radarverfahren wird hierzu mit dem etablierten magnetisch induktiven Verfahren in der Betondeckungsmessung verglichen. Übergeordnete Ziele sind langfristige Untersuchungen mit Radar an jungen Betonkörpern und nach hinreichender Austrocknung sowie Betondeckungsmessungen, die zu schwierig interpretierbaren Ergebnissen führen. Für vergleichende Untersuchungen zur Ermittlung der Leistungsfähigkeit des Radarverfahrens und dem magnetisch induktiven Verfahren wurden Testkörper hergestellt. Der Einfluss der Betonfeuchte auf die Genauigkeit der Messergebnisse wurde an einem Testkörper über einen Zeitraum von 15 Monaten untersucht. Ein weiterer Testkörper wurde für die Untersuchung der getrennten Erkennbarkeit von benachbarten Stäben und zum Einfluss dichtbewehrter Bereiche über einen Zeitraum von 7,5 Monaten regelmäßig gemessen. Für die Messungen an den hergestellten Testkörpern wurden das Radargerät Hilti PS-1000, für das magnetisch induktive Referenzverfahren das Profoscope und das Profometer der Firma Proceq sowie zur Feuchtemessung die Gann Aktiv Elektrode verwendet. Für die Auswertung und Bewertung der Messergebnisse wurden die Radardaten in die Software ReflexW eingelesen, bearbeitet und die Laufzeiten bestimmt. Im Hinblick auf den Messaufwand und die Messgeschwindigkeit unterscheiden sich das Radarverfahren und das magnetisch induktive Referenzverfahren kaum. In der Auswertung ist das Radarverfahren jedoch zeitintensiver und erfordert mehr Erfahrung, Praxis im Umgang mit der Software und Kalibrierung der Permittivität. Die Ergebnisse zeigen, dass sich das magnetisch induktive Verfahren sich für eine Detektion der Bewehrungsstäbe mit einer Betondeckungsmaßen von 20 - 70 mm bei Einhaltung der im DBV-Merkblatt geforderten Genauigkeit eignet. Die Bewehrungsstäbe bis in 150 mm Tiefe konnten schon drei Tage nach der Betonage mit dem Radargerät detektiert werden. Hier konnten im oberflächennahen Bereich die Bewehrungsstäbe mit Abweichung und im tieferen Bereich ohne nennenswerte Abweichung detektiert werden. Den Abschluss bildet eine Handlungsanweisung, die dem Anwender hilft, die Stärken beider Verfahren unter Berücksichtigung der Randbedingungen nutzen zu können.