Refine
Keywords
- Prüfverfahren (4)
- Test method (4)
- Efficiency (3)
- Leistungsfähigkeit (allg) (3)
- Automatic (2)
- Automatisch (2)
- Autonomes Fahren (2)
- Autonomous driving (2)
- Lenken (Fahrzeug) (2)
- Steering (process) (2)
- Technische Vorschriften (Kraftfahrzeug) (2)
- Vehicle regulations (2)
- Active safety system (1)
- Aktives Sicherheitssystem (1)
- Antikollisionssystem (1)
- Auffahrunfall (1)
- Automatische Notbremsung (1)
- Autonomous emerhency braking (1)
- Bicyclist (1)
- Collisison avoidance system (1)
- Fahrstreifenwechsel (1)
- Fußgänger (1)
- Intersection (1)
- Knotenpunkt (1)
- Lane changing (1)
- Official approval (1)
- Pedestrian (1)
- Radfahrer (1)
- Rear end collision (1)
- Robot (1)
- Roboter (1)
- Safety (1)
- Sicherheit (1)
- Zulassung (tech) (1)
Institute
- Abteilung Fahrzeugtechnik (4)
- Sonstige (1)
PROSPECT (Proactive Safety for Pedestrians and Cyclists) is a collaborative research project involving most of the relevant partners from the automotive industry (including important active safety vehicle manufacturers and tier-1 suppliers) as well as academia and independent test labs, funded by the European Commission in the Horizon 2020 research program. PROSPECT's primary goal is the development of novel active safety functions, to be finally demonstrated to the public in three prototype vehicles. A sound benefit assessment of the prototype vehicle's functionality requires a broad testing methodology which goes beyond what has currently been used. Since PROSPECT functions are developed to prevent accidents in intersections, a key aspect of the test methodology is the reproduction of natural driving styles on the test track with driving robots. For this task, data from a real driving study with subjects in a suburb of Munich, Germany was used. Further data from Barcelona will be available soon. The data suggests that intersection crossing can be broken down into five phases, two phases with straight deceleration / acceleration, one phase with constant radius and speed turning, and two phases where the bend is imitated or ended. In these latter phases, drivers mostly combine lateral and longitudinal accelerations and drive what is called a clothoid, a curve with curvature proportional to distance travelled, in order to change lateral acceleration smoothly rather than abrupt. The data suggests that the main parameter of the clothoid, the ratio distance travelled to curvature, is mostly constant during the intersections. This parameter together with decelerations and speeds allows the generation of synthetic robot program files for a reproduction of natural driving styles using robots, allowing a much greater reproducibility than what is possible with human test drivers. First tests show that in principle it is possible to use the driving robots for vehicle control in that manner; a challenge currently is the control performance of the robot system in terms of speed control, but it is anticipated that this problem will be solved soon. Further elements of the PROSPECT test methodology are a standard intersection marking to be implemented on the test track which allows the efficient testing of all PROSPECT test cases, standard mobile and light obstruction elements for quick reproduction of obstructions of view, and a concept for tests in realistic surroundings. First tests using the PROSPECT test methodology will be conducted over the summer 2017, and final tests of the prototype vehicles developed within PROSPECT will be conducted in early 2018
The UN Regulation No. 79 is going to be amended to allow automatically commanded steering functions (ACSF) at speeds above 10 km/h. Hence, requirements concerning the approval of automatically performed steering manoeuvres have to be set in order to allow safe use of automatic steering on public roads as well as improve overall road safety for the driver and the surroundings. By order of the German Federal Ministry of Transport and Digital Infrastructure (BMVI), BASt developed and verified physical test procedures for automatic steering to be implemented in UN Regulation No. 79. The usability of currently available test tools was examined. The paper at hand describes these test procedures and presents results from verification tests. The designated tests are divided in three sections: functionality tests, verifications for the transition of control and emergency tests. System functionality tests are auto matic lane keeping, automatic lane change and an automatic abort of an initiated lane change due to traffic. Those tests check if the vehicle remains in its lane (under normal operating conditions), is able to perform safe automatic lane change manoeuvres and if it considers other road users during its manoeuvres. Transition tests examine the vehicle's behaviour when the driver fails to monitor the system and in situations when the system has to hand over the steering control back to the driver. For instance these tests provoke driver-in-the-loop requests by approaching system boundary limitations, like missing lane markings, surpassing maximum lateral acceleration in a bend or even a major system failure. Even further the driver and his inputs are monitored and if the system detects that he is overriding system actions or contrary want to quit the driving task and unfastens the seat belt, it has to shut down and put the human back into manually control and the responsibility of driving. The last series of test consists of two emergency situations in which the system has to react to a time critical event: A hard decelerating vehicle and a stationary vehicle in front both with no lane change possibility for the ACSF vehicle. Some of the tests, especially the emergency manoeuvres, require special target vehicles and propulsion systems. Since no fully automatic steering vehicles are available, a current Mercedes E-Class with Mercedes' "drive pilot" system was used. It was shown that the vehicle is automatically able to brake to a full stop towards a static Euro NCAP target from partial-automatic driving at 90 km/h, that it could brake towards a rapidly decelerating lead vehicle when travelling at 70 km/h, that it was able during partially automatic driving to remain in its lane in normal operation conditions and to perform a automatic (driver initiated) lane change while surveilling the driver- activities.
Except for corrective steering functions automatic steering is up to now only allowed at speeds up to 10 km/h according to UN Regulation No. 79. Progress in automotive engineering with regard to driver assistance systems and automation of driving tasks is that far that it would be technically feasible to realise automatically commanded steering functions also at higher vehicle speeds. Besides improvements in terms of comfort these automated systems are expected to contribute to road traffic safety as well. However, this safety potential will only be exhausted if automated steering systems are properly designed. Especially possible new risks due to automated steering have to be addressed and reduced to a minimum. For these reasons work is currently ongoing on UNECE level with the aim to amend the regulation dealing with provisions concerning the approval of steering equipment. It is the aim to revise requirements for automatically commanded steering functions (ACSF) so that they can be approved also for higher speeds if certain performance requirements are fulfilled. The paper at hand describes the derivation of reasonable system specifications from an analysis of relevant driving situations with an automated steering system. Needs are explained with regard to covering normal driving, sudden unexpected critical events, transition to manual driving, driver availability and manoeuvres to reach a state of minimal risk. These issues form the basis for the development of test procedures for automated steering to be implemented in international regulations. This holds for system functionalities like automatic lane keeping or automatic lane change as well as for addressing transition situations in which the system has to hand over steering to the driver or addressing emergency situations in which the system has to react instead of the driver.
Euro NCAP will start to test pedestrian Automatic Emergency Braking Systems (AEB) from 2016 on. Test procedures for these tests had been developed by and discussed between the AsPeCSS project and other initiatives (e.g. the AEB group with Thatcham Research from the UK). This paper gives an overview on the development process from the AsPeCSS side, summarizes the current test and assessment procedures as of March 2015 and shows test and assessment results of five cars that had been tested by BASt for AsPeCSS and the respective manufacturer. The test and assessment methodology seems appropriate to rate the performance of different vehicles. The best test result - still one year ahead of the test implementation - is around 80%, while the worst rating result is around 10%. Other vehicles are between these boundaries.