Refine
Has Fulltext
- yes (5) (remove)
Keywords
- Deutschland (3)
- Forschungsbericht (3)
- Germany (3)
- Research report (3)
- Belastung (2)
- Gussasphalt (2)
- Load (2)
- Measurement (2)
- Messung (2)
- Temperatur (2)
Institute
Temperaturen an der Unterseite orthotroper Fahrbahntafeln beim Einbau der Gussasphalt-Schutzschicht
(2003)
Zum Schutz gegen Korrosion und auch zur optischen Gestaltung erhalten Brückenteile aus Stahl Korrosionsschutzbeschichtungen. Bei dem im Regelfall erfolgenden Einbau einer Schutzschicht aus Gussasphalt auf den Deckblechoberseiten werden die Korrosionsschutzbeschichtungen der Deckblechunterseiten thermisch belastet. Eine Temperatur-Zeit-Kurve dieser thermischen Belastung wurde vor 25 Jahren an Brücken gemessen und ist in den Technischen Prüfvorschriften für die Prüfung der Dichtungsschichten und der Abdichtungs-Systeme für Brückenbeläge auf Stahl (TP-BEL-ST) dargestellt. Korrosionsschutzbeschichtungssysteme, die gemäß Anhang A zur ZTV-KOR-Stahlbauten für Deckblechunterseiten vorgesehen sind, müssen im Rahmen dieses Temperatur-Zeit-Regimes wärmebeständig sein. Der Nachweis der Wärmebeständigkeit muss durch eine Prüfung unter Zugrundelegung des aktuellen Temperatur-Zeit-Regimes erfolgen. Seit der erstmaligen Messung der Temperatur-Zeit-Kurve sind die Dichtungssysteme für Stahlbrücken weiterentwickelt worden und haben jetzt vermutlich auch wegen der größeren Dicken einen anderen Wärmedurchgang. Vor weiteren Bestimmungen der Wärmebeständigkeit der Korrosionsschutzbeschichtungssysteme muss daher das Temperatur-Zeit-Regime für die drei Dichtungsschichtregelsysteme gemäß TP-BEL-ST an geeigneten Brücken gemessen und eine neue Temperatur-Zeit-Kurve formuliert werden. Die Kurve wird weiterhin zur Abschätzung der zu erwartenden Wärmebelastung der Korrosionsschutzbeschichtungen für die Planung benötigt. Die Messung der Temperaturen erfolgte an der Unterseite der orthotropen Fahrbahntafeln von neun Bauwerken. Fünf der untersuchten Bauwerke hatten eine Reaktionsharz-Dichtungsschicht, drei Bauwerke eine Bitumen-Dichtungsschicht und ein Bauwerk eine Reaktionharz/Bitumen-Dichtungsschicht aus Bitumen-Schweissbahn. Für die Temperaturmessungen wurden selbstklebende NiCr-Folienthermoelemente verwendet, die auf die vorhandene Korrosionsschutzbeschichtung an der Unterseite der Fahrbahntafeln aufgeklebt wurden. Die gemessenen Maximaltemperaturen lagen zwischen 90,6-° Celsius und 110,0-° Celsius, bei Ausgangstemperaturen des jeweiligen Deckbleches von 3,5-° Celsius bis 26,9-° Celsius. Diese Maximaltemperaturen wurden 20 bis 30 Minuten nach der Beaufschlagung des jeweiligen Flächenelementes mit heißem Gussasphalt erreicht. Es wurde festgestellt, dass die erreichten Maximaltemperaturen und die Wärmeeinwirkungsdauer nicht nur von der Einbautemperatur des Gussasphaltes und der Umgebungstemperatur abhängen, sondern auch bauwerksspezifisch sind. Auf der Grundlage der hier erhaltenen sowie früherer Messergebnisse und deren Auswertungen wurde der Versuch unternommen, eine Berechnung der zu erwartenden Maximaltemperatur an der Unterseite der orthotropen Fahrbahntafel beim Schutzschicht-Einbau vorzunehmen. Es wurde eine Gleichung für die näherungsweise Berechnung der zu erwartenden Maximaltemperatur aufgestellt. Im Ergebnis der Temperaturmessungen an den Brücken wird für künftige Prüfungen der Wärmebeständigkeit von Korrosionsschutzsystemen eine modifizierte Temperatur-Zeit-Kurve empfohlen. Es wird vorgeschlagen, die Dauer der Wärmebeanspruchung auf 6 Stunden zu verlängern und die Temperatur-Zeit-Kurve anzupassen. Abschließend werden Vorschläge zum Verringern der Wärmebelastung von wärmeempfindlichen Korrosionsschutzbeschichtungen während des Einbaus von Gussasphalt-Schutzschichten genannt.
Auch wenn Kosten für die Fugenfüllungen der Randfugen auf Brücken beim Einbau des Belages nur eine untergeordnete Rolle spielen, so haben diese Fugenfüllungen einen großen Anteil an Schäden und den daraus resultierenden Instandsetzungsmaßnahmen. Für die Festlegung der Ausbildung der Fugenfüllungen (z.B. mit oder ohne Unterfüllstoff) und eine Optimierung der verwendeten Materialien ist es wichtig, die tatsächlichen Belastungen, also insbesondere die Fugenbewegungen zu kennen. Um die tatsächlich auftretenden Fugenbewegungen an der Ruhrtalbrücke Mintard im Zuge der BAB A 52 abschätzen zu können, wurden im Rahmen dieses BASt-Projektes kurzfristige, tageszyklische sowie langfristige Fugenbewegungen an den Randfugen gemessen. Dabei waren drei Gruppen von Fugenbewegungen zu unterscheiden: - Fugenbewegungen infolge Tragwerksverformungen durch Verkehrslasten, - tageszyklische Fugenbewegungen basierend auf Temperaturunterschieden zwischen dem Belag und der Unterlage oder zwischen der Kappe und der Unterlage, sowie auf unterschiedlichen Ausdehnungskoeffizienten des Belages und der Unterlage, - langfristige bis jahreszyklische Fugenbewegungen, z.B. aus langfristigen bis jahreszeitlichen Temperaturschwankungen. Für die Fugenbewegungen aus Verkehr ergaben sich Maximalwerte von ca. 16 -µm. Bei der Betrachtung der Ergebnisse ist eine Häufung der Fugenbewegungen aus Verkehr in dem Bereich zwischen 10 -µm und 16 -µm zu erkennen. Die Fugenbewegungen in diesem Bereich können zu einem großen Teil dem Fahrzeugtyp 10 (Sattelfahrzeug mit der Achsfolge 1+1+3) zugeordnet werden. Es ist anzunehmen, dass diese Fugenbewegungen also durch Fahrzeuge mit einem Gewicht im Bereich von 40 t verursacht werden. Der Verlauf der Fugenbewegungen entspricht einer Einflusslinie mit einer Frequenz von ca. 1,1 Hz. Bei den tageszyklischen Fugenbewegungen ergaben sich für maximale tageszyklische Temperaturunterschiede von 11 K maximale Fugenbewegungen von 0,08 mm. Werden diese gemessenen Fugenbewegungen auf die bei maximal möglichen tageszyklischen Temperaturänderungen von 15 K zu erwartenden Werte extrapoliert, so ergeben sich für die Fugenbewegungen der Ruhrtalbruecke Mintard maximale Fugenbewegungen von 0,12 mm. In einem zweiten Schritt wurden die langfristigen bis jahreszeitlichen Fugenbewegungen gemessen. Die gemessenen Fugenbewegungen lagen im Mittel bei 0,7 mm (wobei diese Messwerte aufgrund des Messverfahrens auch die Fugenbewegungen aus Verkehr sowie die tageszyklischen Fugenbewegungen enthalten). In einem Einzelfall wurde eine Fugenbewegung von 1,1 mm gemessen. Bei den im Bereich der Bundesfernstraßen verwendeten Belägen und Abdichtungssystemen nach den ZTV-ING Teil 7 Abschnitt 4 (Abdichtungen im vollen Verbund) kann bei den Randfugen auf Stahlbrücken davon ausgegangen werden, dass die Fugenbewegungen (Summe aus langfristigen, tageszyklischen und verkehrsinduzierten Fugenbewegungen) im Regelfall 1 mm nicht überschreiten. Die tageszyklischen Fugenbewegungen liegen in einer Größenordnung von < 0,2 mm und die verkehrsinduzierten Fugenbewegungen in einer Größenordnung von < 0,02 mm.
Bei der ersten Bauwerksprüfung nach dem Austausch des Brückenbelags wird bei Stahlbrücken häufig eine überproportional hohe Anzahl an Schweißnahtrissen in der orthotropen Fahrbahnplatte festgestellt. Die naheliegende Vermutung ist, dass diese Schäden im Zusammenhang mit den Beanspruchungen stehen, die beim Austausch des Brückenbelags entstehen.
Relevante Beanspruchungen können beim Entfernen des alten Brückenbelags, z. B. durch die dynamischen Belastungen beim Fräsen oder beim Einbau des neuen Brückenbelags, durch die thermische Belastung beim Einbau des Gussasphaltes oder ggf. beim Walzen, z. B. durch die dynamischen Belastungen beim Verdichten von Walzasphalt-Deckschichten auftreten.
Verschärft wird die Problematik durch die Entwicklung von immer leistungsfähigeren Maschinen wie Hochleistungsfräsen oder Asphalt-Fertiger mit immer breiteren Einbaubohlen.
Im Rahmen des Forschungsprojekts werden Grundlagen für weiterführende Untersuchungen zum Thema „Beanspruchung von Stahlbrücken beim Austausch des Brückenbelags“ erarbeitet und dargestellt. Im Mittelpunkt steht dabei die Temperaturbelastung der Stahlkonstruktion infolge des „Einbaus des neuen Brückenbelags“.
Zu diesem Zweck wurden verschiedene Erneuerungsmaßnahmen fachtechnisch begleitet, um den Prozessablauf zu dokumentieren und um exemplarische Temperaturverteilungen in der orthotropen Fahrbahnplatte während des Asphalteinbaus zu ermitteln. Dabei handelt es sich um folgende Bauwerke:
• Rheinbrücke Leverkusen
Einbau einer Deckschicht aus Gussasphalt am 20.05.2016.
• Wiehltalbrücke
Fräsen, Einbau einer Deckschicht aus lärmreduziertem Porous Mastix Asphalt (PMA), Walzen am 17.07.2017.
• Rheinbrücke Duisburg-Neuenkamp
Einbau einer Deckschicht aus Gussasphalt am 15.08.2017.
• Hochmoselbrücke
Einbau einer Schutzschicht aus Gussasphalt am 28.06.2019.
Die daraus ermittelten Ergebnisse bilden eine erste Grundlage für weitergehende numerische Parameterstudien. Darüber hinaus werden Empfehlungen für zukünftige Baumaßnahmen gegeben.
Bei Fahrbahnoberflächen von Brücken kommt es schneller zur Bildung von Glätte als auf Straßenabschnitten mit direktem Kontakt zum Erdboden. Insbesondere bei Brücken an ungünstigen Standorten wie in der Nähe von Gewässern oder in Einschnitten besteht vor allem im Spätherbst und im zeitigen Frühjahr eine besondere Gefahr für die Verkehrsteilnehmer.
Dem erhöhten Sicherheitsrisiko wird in der Regel mit einem intensivierten Winterdienst begegnet, was allerdings einen überdurchschnittlich hohen Zeitaufwand und Personaleinsatz bedeutet. Taumittelsprühanlagen können zu einer Entlastung führen, sind jedoch aufgrund ökologischer und ökonomischer Bedenken umstritten. Eine Alternative stellt die Temperierung der Fahrbahn dar, die im BAStBericht B 87 „Vermeidung von Glättebildung auf Brücken durch die Nutzung von Geothermie“ ausführlich erläutert ist.
Beim Ersatzneubau der Brücke über den Elbe-Lübeck-Kanal in der Ortslage Berkenthin kam erstmals in Deutschland eine mittels Geothermie temperierte Fahrbahnplatte zum Einsatz. Im Rahmen der fachtechnischen Begleitung dieser Pilotanwendung erfolgten umfangreiche Temperaturmessungen an der alten Brücke, und es wurden Einbau sowie Inbetriebnahme der Temperierungseinrichtung bei der neuen Brücke dokumentiert.
Zwei Aspekte stellen dabei eine grundlegende Innovation bei der Temperierung von Fahrbahnbelägen dar. Zum einen wurden die Rohrregister erfolgreich „schwimmend“ inmitten des Asphaltkörpers platziert, und zum anderen wird die Anlage über ein Mess, Steuer- und Regelungssystem betrieben, sodass eine Temperierung nur im Bedarfsfall erfolgt.
Die ursprünglich vorgesehene vergleichende Betrachtung des Temperaturverhaltens konnte in Ermangelung geeigneter Messdaten der neuen Brücke nicht erfolgen. Somit war eine quantitative Bewertung der temperierten Fahrbahn nicht möglich. Ungeachtet dessen werden aus den gewonnenen Erkenntnissen bautechnische Empfehlungen abgeleitet, die sich für ähnliche Maßnahmen als hilfreich erweisen dürften.
Der Originalbericht enthält als Anhang einige ausgewählte Temperaturverläufe und eine gutachterliche Stellungnahme zum thermischen Verhalten von beheizten Fahrbahnplatten und deren Temperierungssystem auf Brücken.
Bei Fahrbahnoberflächen von Brücken und insbesondere von Stahlbrücken besteht gegenüber dem Straßenverlauf vor und hinter der Brücke die Gefahr einer vorzeitigen Glättebildung, da die relativ dünnen Fahrbahntafeln schnell auskühlen, während der dickere Belagsaufbau und der Untergrund auf der freien Strecke wie ein Wärmespeicher wirken. Insbesondere bei Brücken an ungünstigen Standorten, wie in der Nähe von Gewässern oder in Einschnitten, besteht vor allem im Spätherbst und am Beginn des Frühjahrs eine besondere Gefahr für die Verkehrsteilnehmer. Dieser besonderen Gefährdung des Verkehrs wird derzeit entweder durch Frühwarnsysteme mit vorsorglichem Streudienst oder durch Taumittelsprühanlagen begegnet. Eine weitere Möglichkeit die besondere Gefährdung aus dem Vereisungsverhalten der Brückenfahrbahn zu beseitigen, ist die, den Fahrbahnbelag der gefährdeten Brücken in den kritischen Zeiträumen zu beheizen. Dadurch wird die Salzbelastung für die Umwelt und auch für das Bauwerk reduziert. Im BASt"Bericht B87 "Vermeidung von Glättebildung auf Brücken durch die Nutzung von Geothermie" [2] wird diese umweltfreundliche Alternative ausführlich erläutert. Im Rahmen des hier beschriebenen Projekts wurden ergänzende Untersuchungen durchgeführt, um weiterführende Erkenntnisse über das Verbundverhalten und die Dauerhaftigkeit von Gussasphalt mit integrierten Rohrregistern zu gewinnen und daraus Empfehlungen für die Praxis abzuleiten. Zum einen handelt es sich um Abreissversuche an zwei D-Brückenmodulen mit Fahrbahntemperierung, zum anderen um Langzeitmessungen auf einer Straßenbrücke, bei der im Rahmen einer Erneuerung des Fahrbahnbelags probeweise Rohrregister eingebaut wurden. Es wurden verschiedene Systeme untersucht, die eine sichere Befestigung der Rohrregister auf der Unterlage gewährleisten und gleichzeitig den Einbau der Deckschicht möglichst wenig behindern. Desweiteren wurde die Ausrichtung der Rohre untersucht und die Dauerhaftigkeit überprüft. Großflächige Befestigungsgitter haben sich zur Fixierung von Rohrregistern für die in Deutschland üblichen Fahrbahnbeläge als ungeeignet erwiesen, da sie einen ausreichenden Schichtenverbund behindern. Für die Befestigung der Rohrregister sind daher wenig störende Befestigungsmittel wie z.B. halbseitige Rohrschellen zu empfehlen. Für quer zur Fahrtrichtung ausgeführte Rohrregistern konnte die grundsätzliche Praxistauglichkeit hinsichtlich des Einbaus und der Dauerhaftigkeit unter Verkehrsbelastung nachgewiesen werden. Als entsprechender Nachweis für längs zur Fahrtrichtung ausgeführte Rohrregister dient die erfolgreiche Pilotanwendung bei der Kanalbrücke Berkenthin. Im Hinblick auf die Dauerhaftigkeit konnten im Untersuchungszeitraum von 5 Jahren keine Einschränkungen festgestellt werden. Es wurden weder Risse noch Verformungen im Fahrbahnbelag indiziert. Für eine weitere Beurteilung des Langzeitverhaltens sollten auch zukünftig regelmäßige Begehungen und Messungen erfolgen.