Refine
Keywords
- Conference (2)
- Injury (2)
- Konferenz (2)
- Schweregrad (Unfall, Verletzung) (2)
- Severity (accid, injury) (2)
- Statistics (2)
- Statistik (2)
- Verletzung (2)
- Accident prevention (1)
- Age (1)
The incidence and treatment of sternal fractures among traffic accidents are of increasing importance to ensure best possible outcomes. Analysis of technical indicators of the collision, preclinical and clinical data of patients with sterna fractures from 1985-2004 among 42,055 injured patients were assessed by an Accident Research Unit. Two time groups were categorized: 1985-1994 (A) vs. 1995-2004 (B). 267/42,055 patients (0.64%) suffered a sterna fracture. Regarding the vehicle type, the majority occurred after car accidents in 0.81% (251/31,183 pts), followed by 0.19% (5/2,633pts) driving motorbike, and 0.11% (4/3,258pts) driving a truck. 91% wore a safety belt. Only 13% of all passengers suffering a sternal fracture had an airbag on board (33/255 car/trucks), with an airbag malfunction in 18%. The steering column was deformed in 39%, the steering wheel in 36%. Cars in the recent years were significantly older (7.67-±5 years (B) vs. 5.88-±5 years (A), p=0.003). Cervical spine injuries are frequent (23% vs. 22%), followed by multiple rib fractures (14% vs. 12%) and lung injuries (12% vs. 11%). We found 9/146 (6%) and 3/121 patients (3%) with heart contusion among the 267 sternal fractures. MAIS was 2.56-±1.3 vs. 2.62-±1.3 (A vs. B, p=0.349). 18% of patients were polytraumatized, with 11.2% dying at the scene, 2.3% in the hospital. Sternal fractures occur most often in old cars to seat-belted drivers often without any airbag. Severe multiple rib fractures and lung contusion are concomitant injuries in more than 10% each indicating the severity of the crash. Over a twentyyear period, the injury severity encountered was not different with 18% polytrauma patients suffering sternal fractures.
Bicyclists are minimally or unprotected road users. Their vulnerability results in a high injury risk despite their relatively low own speed. However, the actual injury situation of bicyclists has not been investigated very well so far. The purpose of this study was to analyze the actual injury situation of bicyclists in Germany to create a basis for effective preventive measures. Technical and medical data were prospectively collected shortly after the accident at the accident scenes and medical institutions providing care for the injured. Data of injured bicyclists from 1985 to 2003 were analyzed for the following parameters: collision opponent, collision type, collision speed (km/h), Abbreviated Injury Scale (AIS), Maximum AIS (MAIS), incidence of polytrauma (Injury Severity Score >16), incidence of death (death before end of first hospital stay). 4,264 injured bicyclists were included. 55% were male and 45% female. The age was grouped to preschool age in 0.9%, 6 to 12 years in 10.8%, 13 to 17 years in 10.4%, 18 to 64 years in 64.7%, and over 64 years in 13.2%. The MAIS was 1 in 78.8%, 2 in 17.0%, 3 in 3.0%, 4 in 0.6%, 5 in 0.4%, and 6 in 0.2%. The incidence of polytrauma was 0.9%, and the incidence of death was 0.5%. The incidence of injuries to different body regions was as follows: head, 47.8%; neck, 5.2%, thorax, 21%; upper extremities, 46.3%; abdomen, 5.8%; pelvis, 11.5%, lower extremities, 62.1%. The accident location was urban in 95.2%, and rural in 4.8%. The accidents happened during daylight in 82.4%, during night in 12.2%, and during dawn/dusk in 5.3%. The road situation was as follows: straight, 27.3%; bend, 3.0%; junction, 32.0%; crossing, 26.4%; gate, 5.9%; others, 5.4%. The collision opponents were cars in 65.8%, trucks in 7.2%, bicycles in 7.4%, standing objects in 8.8%, multiple objects in 4.3%, and others in 6.5%. The collision speed was grouped <31 in 77.9%, 31-50 in 4.9%, 51-70 in 3.7%, and >70 in 1.5%. The helmet use rate was 1.5%. 68% of the registered head injuries were located in the effective helmet protection area. In bicyclists, head and extremities are at high risk for injuries. The helmet use rate is unsatisfactorily low. Remarkably, two thirds of the head injuries could have been prevented by helmets. Accidents are concentrated to crossings, junctions and gates. A significant lower mean injury severity was observed in victims using separate bicycle lanes. These results do strongly support the extension or addition of bicycle lanes and their consequent use. However, the lanes are frequently interrupted at crossings and junctions. This emphasizes also the important endangering of bicyclists coming from crossings, junctions and gates, i.e. all situations in which contact of bicyclists to motorized vehicles is possible. Redesigning junctions and bicycle traffic lanes to minimize the possibility of this dangerous contact would be preventive measures. A more consequent helmet use and use and an extension of bicycle paths for a better separation of bicyclists and motorized vehicle would be simple but very effective preventive measures.